Взаимодействие лекарственных веществ с ферментами
При изучении вопросов безопасности применения лекарственных средств основное внимание обычно уделяется взаимодействию нескольких лекарственных препаратов, индивидуальной непереносимости лекарственных средств и особенностям их распределения/выведения, связанным с основным и сопутствующими заболеваниями, имеющимися у пациента, или их осложнениями. Между тем, исследования последних лет свидетельствуют, что лекарственные препараты могут также взаимодействовать с пищей, в частности, с растительными компонентами, которые входят в состав пищи или используются в качестве биологически активных добавок или средств народной медицины [1].
На этапе всасывания лекарств в желудочно-кишечном тракте влияние пищи может быть связано: с образованием комплексов с лекарственными препаратами, изменением рН в желудке и/или двенадцатиперстной кишке, перераспределением лекарственных препаратов между химусом и просветом желудочно-кишечного тракта, конкуренцией за транспортные системы, обеспечивающие поступление лекарственных и пищевых веществ в системный кровоток из просвета кишечника. Такие взаимодействия влияют на скорость и степень абсорбции лекарственных препаратов, что приводит к изменению их максимальной концентрации в плазме крови или времени ее достижения.
Если бы взаимодействие наблюдалось только на этапе всасывания лекарственных веществ в желудочно-кишечном тракте, его можно было бы избежать за счет назначения лекарственных препаратов в интервалы между приемами пищи или использования парентеральных путей введения. Однако многие пищевые продукты влияют не только на биодоступность и скорость всасывания лекарств из желудочно-кишечного тракта, но и могут выступать в качестве индукторов/ингибиторов ферментов, участвующих в их метаболизме. Так, например, своеобразной сенсацией стало открытие влияния грейпфруктового сока на активность системы цитохрома Р450 [2]. Пища может содержать витамины (А, Е, В6 и др.) и микроэлементы (Se, Cu, Zn и др.), представляющие собой кофакторы ферментов, метаболизирующих лекарственные препараты. Углеводы, липиды, этанол являются индукторами или конкурентными ингибиторами ферментов первой фазы метаболизма.
К сожалению, большинство практикующих врачей не учитывают взаимодействия лекарственных препаратов с пищей даже в тех случаях, когда оно происходит на уровне всасывания. При этом пища может как увеличивать, так и уменьшать скорость абсорбции и биодоступность лекарственного вещества из желудочно-кишечного тракта. Взаимодействие медикаментов с пищей может снизить эффективность проводимой терапии и повысить вероятность развития побочных эффектов, особенно у пациентов из групп риска (табл. 1) и при применении препаратов с узким терапевтическим диапазоном (табл. 2) [3]. Ниже в обобщенной форме представлены литературные данные по проблеме взаимодействий лекарственных и пищевых веществ.
Взаимодействие лекарственных препаратов с пищей чаще всего наблюдается при их пероральном введении. Основные взаимодействия такого рода представлены в таблице 3 [4]. В тех случаях, когда пища изменяет биодоступность лекарственного препарата, он должен назначаться натощак (не менее, чем за 30 мин до приема пищи) или через 2-3 часа после приема пищи.
Интересно отметить, что взаимодействие лекарственных препаратов и пищи зависит не только от химического состава последней, но и от дозировки и длительности приема лекарственного средства. Так, одновременное применение кетоконазола и кока-колы приводит к повышению концентрации препарата в крови. Однократное повышение концентрации лекарства не имеет существенного клинического значения, однако длительное повышение концентрации требует контроля дозировок кетоконазола для предупреждения развития его побочных эффектов.
Влияние пищи не ограничивается изменением биодоступности лекарственных средств. Особенно опасно одновременное применение ингибиторов моноаминоксидазы (МАО) и продуктов, богатых тирамином (табл. 4). В норме тирамин метаболизируется с участием МАО, поэтому при приеме продуктов с его высоким содержанием на фоне лечения ингибиторами МАО возможно повышение артериального давления [5].
Употребление продуктов, содержащих гистамин или являющихся гистаминолибераторами (табл. 5), способно привести к развитию псевдоаллергической реакции, которая может быть ошибочно трактована как побочный эффект лекарственной терапии [6] и стать причиной отмены медикаментов или неоправданного назначения противоаллергических средств.
Пищевые продукты, содержащие витамин К (табл. 6), являются антагонистами варфарина и других антикоагулянтов [7], так как на основе этого витамина печенью синтезируются некоторые из плазменных факторов свертываемости крови.
Многие из витаминов, в частности, витамин В6, являются кофакторами ферментов, метаболизирующих лекарственные средства. Поэтому содержащие их продукты повышают интенсивность метаболизма соответствующих лекарственных препаратов. Например, продукты, богатые витамином В6 (табл. 7), увеличивают скорость расщепления леводопы, снижают концентрацию дофамина в крови и уменьшают противопраркисонические эффекты препарата. С другой стороны, дефицит витамина В6 может снизить интенсивность метаболизма таких препаратов, как терфенадин, изониазид, мадопар и др. [8].
В желудочно-кишечном тракте жирная пища вызывает перераспределение липофильных и гидрофильных лекарственных препаратов между просветом кишечника и химусом, что изменяет скорость и степень их абсорбции. Так, жирная пища повышает абсорбцию альбендазола, гризеофульвина, итраконазола, мебеназола и др. Напротив, всасывание диданозина, индинавира, зидовудина и др. под влиянием жиров замедляется [9].
Молоко снижает рН желудочного сока и тем самым уменьшает биодоступность ряда лекарственных препаратов. К их числу относятся тетрациклины, фторхинолоны, препараты железа и некоторые ингибиторы вирусных протеиназ (например, нельфинавир) [10]. C другой стороны, продемонстрировано отсутствие воздействия молока на абсорбцию нового цефалоспоринового антибиотика AS-924, биодоступность которого снижается под влиянием воды (в сравнении с использованием препарата без запивания) [11].
Мед и сахара, входящие в его состав (фруктоза, глюкоза, сукроза) могут существенно снижать интенсивность метаболизма нарингина, не влияя на его распределение [12].
Таким образом, пища и ее отдельные компоненты могут оказывать существенное влияние на фармакокинетику лекарственных средств. В первую очередь это касается абсорбции пероральных препаратов в желудочно-кишечном тракте, но некоторые пищевые продукты воздействуют также на распределение и/или метаболизм лекарственных веществ. К сожалению, приходится констатировать, что эта проблема все еще не нашла достаточного освещения в специальной литературе.
Проблема взаимодействия лекарственных препаратов и пищи является комплексной. Поэтому к ее изучению должны привлекаться исследовательские группы, включающие фармакологов, нутрицеологов, терапевтов и врачей других специальностей. При этом следует учитывать, что пищевые продукты с трудом поддаются стандартизации. Полученные в разных регионах, они могут значительно отличаться по микроэлементному составу, что связано с эндемическими особенностями. Различия в географических и климатических условиях предполагают выращивание разных сортов овощных культур, плодово-ягодных деревьев и кустарников, разведение разных пород домашнего скота и птицы. Все эти факторы способны повлиять на химический состав пищи и в той или иной мере модифицировать ее воздействие на фармакокинетику лекарственных веществ.
Кроме того, особенности культуры, национальные традиции, уровень жизни, другие социально-экономические факторы оказывают влияние не только на характер используемых продуктов питания, но и на способы их хранения, приготовления и сочетания при одновременном приеме. Поэтому в настоящее время большинство исследований влияния пищи на фармакокинетику лекарств посвящены оценке эффектов отдельных ее компонентов. Однако и при таком подходе результаты этих исследований из-за сложности стандартизации поддаются скорее качественному, чем количественному описанию и анализу. Таким образом, проблема взаимодействия лекарственных препаратов с пищей далека от окончательного разрешения, но проблему эту необходимо ставить, информируя практикующих врачей о ее клиническом значении. Очевидно, что существуют взаимодействия с пищевыми продуктами, которые необходимо учитывать при применении соответствующих препаратов. Назначая лекарственную терапию, врач должен обязательно оговаривать режим питания больного с целью снижения риска таких взаимодействий. Для снижения вероятности взаимодействий на уровне абсорбции в желудочно-кишечном тракте лекарства, если это возможно, следует назначать независимо от приема пищи.
Литература
- Белоусов Ю.Б., Гуревич К.Г. Взаимодействия компонентов фитопрепаратов с синтетическими лекарственными средствами // Фарматека. — 2002. — № 6.
- Ушакова Е.А. Взаимодействие лекарственных средств с грейпфрутовым соком // Фарматека. — 2001. — № 8. — С. 58-62.
- McInes GT, Brodie MJ. Drug interactions that matter: a clinical reappraisal. Drugs 1988;36:83-110.
- Knapp HR. Drug-nutrient interactions in medical training. J Am Coll Nutr 1995;14:114-25.
- Tardo DS. Drug interactions with natural products. Drugs Facts and Comparisons NEWS. May 1999;34-8.
- Йегер Л. Клиническая иммунология и аллергология. — М., 1990.
- McEvoy GK. Drug information. Bethesda, 1999.
- Tardo DS. Drug interactions with natural products. Drugs Facts and Comparisons NEWS. February 2000;16.
- Faraga F, Garsia DB, de Juana VP, Bermejo VMT. Influence of foods on the absorption of antimicrobial agents. Nutr Hosp 1997;12:277-88.
- Cardona PD. Drug-food interactions. Nutr Hosp 1999;14(suppl. 2):S129-40.
- Matsumoto F, Sakurai I, Morita M, et al. Effects of the quantity of water and milk ingested with AS-924. Int J Antimicrob Agents 2001;18:471-6.
- Hou YC, Siu SL, Huang TY, et al. Effects of honey and sugars on the metabolism and disposition of naringin. Planta Med 2001;67:538-41.
Источник
Рекомендации к назначению ферментных препаратов при синдромах нарушенного пищеварения и всасывания
Пищеварение — это процесс, обеспечивающий пополнение энергетических и пластических ресурсов организма за счет переработки различных пищевых субстратов, поступающих в пищеварительный тракт. В его осуществлении принимают участие прежде всего пищеварительны
Пищеварение — это процесс, обеспечивающий пополнение энергетических и пластических ресурсов организма за счет переработки различных пищевых субстратов, поступающих в пищеварительный тракт. В его осуществлении принимают участие прежде всего пищеварительные железы, в секрете которых содержатся ферменты (табл. 1).
Нарушение процессов пищеварения (мальдигестия) и всасывания (мальабсорбция) являются наиболее распространенными синдромами в практике врача-терапевта и гастроэнтеролога. Их развитие может быть обусловлено недостаточной продукцией пищеварительных ферментов или снижением их активности. Механизмы нарушений процессов пищеварения и всасывания многообразны и определяются в первую очередь заболеваниями, лежащими в их основе (табл. 2).
Клинические проявления синдромов мальдигестии и мальабсорбции зависят также и от механизмов их развития (табл. 3).
При синдромах мальдигестии и мальабсорбции нередко развиваются специфические синдромы, обусловленные дефицитом в организме некоторых витаминов и микроэлементов. Например, дефицит ретинола (витамин А) сопровождается развитием гемералопии (куриная слепота), ксерофтальмии, кератомаляции, гиперкератоза; дефицит никотинамида (витамин РР) — дерматита, диареи, деменции и потери массы тела; дефицит цианкобаламина (витамин В12) — болезненной нейропатии, атаксии, парастезии, нарушением температурной чувствительности, макроцитарной анемии; дефицит аскорбиновой кислоты (витамин С) — кровоизлияниями под надкостницу и в основании волосяных фолликулов; дефицит железа — мышечной слабости, глоссита, колонихий, микроцитарной анемии и др. Основным направлением в лечении больных с синдромами нарушенного пищеварения и всасывания, особенно при невозможности устранения причин их развития, является заместительная терапия ферментами, иногда витаминами и микроэлементами.
В настоящее время в распоряжении врача имеется большое количество ферментных препаратов, отличающихся количеством входящих компонентов, степенью энзимной активности, способами производства и формами выпуска. Все ферменты условно можно разделить на две группы: панкреатин в чистом виде и панкреатин + компоненты желчи + гемицеллюлаза. Панкреатин содержит три фермента: липазу, протеазу и амилазу. Препарат считается эффективным, если в 1 г панкреатина содержится около 40 000 ЕД липазы (единицы Международной фармацевтической федерации). Липаза участвует в гидролизе эмульгированного желчью нейтрального жира, преимущественно в двенадцатиперстной кишке, так как при поступлении липазы в тощую кишку ее активность резко снижается. Протеазы в панкреатине преимущественно состоят из трипсина, под его влиянием белки, в основном животного происхождения, расщепляются на аминокислоты; кроме того, трипсин по принципу обратной связи участвует в регуляции панкреатической секреции. Амилаза расщепляет внеклеточные полисахариды (крахмал, гликоген) и практически не участвует в гидролизе растительной клетчатки. Препараты панкреатина не оказывают влияния на функцию желудка, печени, моторику билиарной системы и кишечника, но снижают секрецию панкреатического сока.
В состав ряда современных ферментных препаратов наряду с панкреатином входят желчные кислоты (желчь) и гемицеллюлаза. Препараты, содержащие желчные кислоты, увеличивают панкреатическую секрецию и холерез, стимулируют моторику кишечника и желчного пузыря. Желчные кислоты увеличивают осмотическое давление кишечного содержимого, а в условиях микробной контаминации кишечника происходит их деконъюгация с последующим развитием осмотической и секреторной диареи. Желчные кислоты вступают в энтерогепатическую циркуляцию и метаболизируются в печени, что увеличивает ее функциональную нагрузку. Деконъюгированные желчные кислоты повреждают слизистую оболочку желудочно-кишечного тракта.
Ферментные препараты, содержащие желчные кислоты, не следует назначать при остром и хроническом панкреатите, при гепатите и циррозе печени, диарее, язвенной болезни и воспалительных заболеваниях кишечника.
Наличие в ферментном препарате гемицеллюлазы обеспечивает расщепление полисахаридов растительного происхождения.
При назначении того или иного ферментного препарата необходимо прежде всего учитывать его состав.
Вторым фактором, определяющим активность лечения, является форма выпуска препарата. Большинство ферментных препаратов выпускаются в виде драже или таблеток диаметром 5 (и более) мм в кишечнорастворимых оболочках, что защищает ферменты от высвобождения в желудке и разрушения соляной кислотой желудочного сока. Из желудка одновременно с пищей могут эвакуироваться в двенадцатиперстную кишку твердые частицы, диаметр которых составляет не более 2 мм. Более крупные частицы, в частности ферментные препараты в таблетках или драже, эвакуируются в межпищеварительный период, когда пищевой химус уже покинул двенадцатиперстную кишку. В результате препараты не смешиваются с пищей и не участвуют в пищеварении. Для обеспечения быстрого и «гомогенного» смешивания с пищевым химусом были созданы высокоактивные полиферментные препараты в виде микротаблеток (панцинтрат) и микросфер (креон), диаметр которых не превышает 2 мм. Препараты заключены в желатиновую капсулу, которая разрушается в желудке, содержимое (микротаблетки и микросферы) смешивается с пищевым химусом и вместе с ним постепенно поступает в двенадцатиперстную кишку. При pH дуоденального содержимого выше 5,5 оболочки микросфер и микротаблеток растворяются и ферменты начинают действовать на большой поверхности, аналогично физиологическим процессам пищеварения.
Третьим фактором, определяющим активность ферментных препаратов, является интрадуоденальный уровень pH и эффективная моторика двенадцатиперстной кишки, обеспечивающая длительный контакт ферментов с пищевым химусом. Если pH дуоденального содержимого снижается до 3,5 и ниже, то происходит необратимая инактивация липазы и трипсина, преципитация желчных кислот, влекущая за собой нарушение эмульгирования и всасывания жиров. Основными причинами падения pH в двенадцатиперстной кишке являются избыточный бактериальный рост в кишке, гиперацидоз, снижение секреции бикарбонатов. Для повышения pH в дуоденуме используют блокаторы H2-рецепторов гистамина (ранитидин, фамотидин), иногда блокаторы протонной помпы (омепразол и др.), антацидные препараты (маалокс, гастал и др.) и обязательно проводят деконтаминацию двенадцатиперстной кишки антибактериальными препаратами (бисептол и др.), а иногда антипаразитарными (метронидазол и др.) средствами.
Дозы препаратов и продолжительность лечения определяют индивидуально, в зависимости от ведущего механизма данного нарушения. Эффективность ферментных препаратов иногда может зависеть от моторных нарушений верхних отделов пищеварительного тракта. Для устранения этих расстройств чаще всего используют прокинетики типа мотилиум (10 мг за 15 минут до еды три-четыре раза в день).
Важнейшим фактором, определяющим успех терапии, является правильный выбор ферментного препарата, его дозы и продолжительности лечения. При выборе препарата учитывается характер заболевания и механизмы, лежащие в основе нарушений пищеварения (табл. 5).
Основной недостаток ферментной терапии в том, что ее активность порой зависит от других патогенетических механизмов. Эффект терапии ферментными препаратами может быть повышен путем устранения синдрома избыточной микробной контаминации двенадцатиперстной и других отделов тонкой кишки путем проведения курсов антимикробной терапии, а при закислении дуоденума — путем восстановления нужного pH с помощью блокаторов H2-рецепторов гистамина и антацидных средств (маалокс и др.).
Источник