Вспомогательные вещества для производства лекарственных средств
В зависимости от своего назначения все вспомогательные вещества можно разделить на несколько самостоятельных групп. Однако такое деление условно, ибо некоторые из этих веществ одновременно выполняют несколько функций, и соответственно, относятся к разным группам.
Вспомогательные вещества в таблетках по своему назначению делятся на наполнители (разбавители), связующие (склеивающие), разрыхляющие (дезинтегранты), антифрикционные (скользящие и смазывающие). Кроме того, применяются вещества, входящие в состав покрытия таблеток, в частности вещества из группы красителей.
В настоящее время химической промышленностью выпускается достаточно широкий ассортимент вспомогательных веществ для фармацевтического производства.
1. Наполнители (разбавители)
Наполнители применяются для обеспечения необходимой массы таблеток при малых дозировках лекарственных веществ. В случае прямого прессования смеси они могут проявлять также связующие и улучшающие скольжение свойства (микрокристаллическая целлюлоза (МКЦ). При этом МКЦ благодаря химической чистоте и низкому влагосодержанию обеспечивает получение таблеток, характеризующихся высокой химической стойкостью и стабильностью окраски [1].
Микрокристаллическая целлюлоза за рубежом выпускается под торговой маркой Avicel ® PH. В производстве таблеток используется несколько сортов микрокристаллической целлюлозы марки Avicel [3]:
- МКЦ сорта AvicelРН — 101 (с размером частиц 50 mm) наиболее широко применяется при производстве таблеток прямым прессованием или с использованием влажного гранулирования;
- МКЦ сорта AvicelPH-102 (с размером частиц 90 mm) обладает такой же степенью прессуемости, как и МКЦ сорта Avicel PH -101, но при этом благодаря меньшей дисперсности она улучшает текучие свойства порошков, что способствует более полному заполнению матрицы гранулятом в процессе таблетирования;
- МКЦ сорта AvicelPH-103 характеризуется меньшим содержанием влаги по сравнению с другими сортами МКЦ и идеально подходит для таблетирования влагочувствительных веществ;
- МКЦ сорта AvicelPH-105 имеет наименьшую степень дисперсности и применяется при таблетировании грубодисперсных, гранулированных или кристаллических веществ прямым прессованием. Её также применяют в смеси с AvicelPH-101 или AvicelPH-102 для обеспечения необходимой текучести и/или прессуемости.
2. Связующие (склеивающие) вещества
Частицы большинства лекарственных веществ имеют небольшую силу сцепления между собой, в связи с чем при их таблетировании требуется высокое давление. Последнее часто способствует износу таблеточной машины и обуславливает получение некачественных таблеток.
Для достижения необходимой силы сцепления при небольших давлениях к лекарственным субстанциям прибавляют связующие вещества, которые при заполнении межчастичных пространств увеличивают площадь контактируемых поверхностей.
Так, поливинилпирролидон (ПВП) широко используется в таблеточном производстве и приводится в USP (The United State Pharmacopoeia) и BP (British Pharmacopoeia), соответственно, как «Повидон»/»Поливидон» (растворим в воде) и «Кросповидон»/ «Сополивидон» (не растворим в воде). ПВП выпускается под разными торговыми марками а именно: Плаздоны (водорастворимые), Полиплаздоны (водонерастворимые, фирма — производитель — ISP, США) и Коллидоны (как водорастворимые, так и водонерастворимые, фирма — производитель — BASF, Германия). Преимуществами использования повидонов/поливидонов является легкая их растворимость в воде и спирте, а также их способность улучшать растворение и биодоступность лекарственных веществ (антибиотиков, анальгетиков, химиотерапевтических средств) за счет образования водорастворимых комплексов [2].
Повидоны / Поливидоны / Плаздоны могут использоваться как в сухом виде, так и в виде растворов. Существует несколько типов Плаздонов в зависимости от константы «К» — величины, характеризующей вязкость раствора:
Величина «К»
Фирмой BASF (Германия) выпускаются Коллидоны пяти типов с различной мо-лекулярной массой и разным гранулометрическим составом:
- Коллидон 12 PF («PF» — «pyrogenfreе» — «апирогенный»);
- Коллидон 17 PF;
- Коллидон 25;
- Коллидон 30;
- Коллидон 90 F («F» — от англ. «fein» — «мелкий»).
Первые два типа коллидона не используются в таблеточном производстве. В то же время Коллидон 25 с молекулярной массой 28000-34000 — идеальное связующее при использовании его в количестве 2-5 % от массы таблетки. При этом он обладает также разрыхляющими, скользящими свойствами и способствует улучшению биодоступности лекарственных веществ [3].
3. Разрыхляющие вещества (дезинтегранты)
Разрыхляющие вещества добавляют к таблеткам для улучшения их распадаемости в среде желудочно-кишечного тракта и высвобождения лекарственных веществ с оказанием необходимого терапевтического эффекта.
Полиплаздон XL (средний размер частиц 100 m) и полиплаздон XL-10 (средний размер частиц 30 m) — поперечносшитые полимеры, применяемые в количестве 0,5-5 % при получении таблеток прямым прессованием и с использованием влажного или сухого гранулирования. Полиплаздоны находят применение в основном при изготовлении таблеток с водонерастворимыми лекарственными веществами (рифампицин, рокситромицин). Полиплаздон XL используется в основном при производстве крупных таблеток с содержанием лекарственного вещества в количестве 500 мг и более, в том числе таблеток, содержащих витамины, анальгетики. Полиплаздон Xl 10 удобен при изготовлении маленьких таблеток, а также капсул [3].
Коллидон CL (от англ. «cross linкed» — «сшитый полимер»), в количестве 2-5 % от массы таблетки обладает хорошими разрыхляющими свойствами, но следует учесть, что он не растворим ни в одном из разрешенных к медицинскому применению растворителей, что определяет введение в таблетируемую массу в сухом виде [3,4].
Полиплаздон XL имеет некоторые преимущества перед Коллидоном CL. Так, например, витаминосодержащие таблетки, полученные прямым прессованием с содержанием коллидона CL в количестве 5% от массы таблетки, имеют по сравнению с таблетками, содержащими в аналогичном количестве полиплаздон XL, более низкую прочность по истечении двух месяцев ускоренного старения при температуре 37 0 С, а по истечении шести месяцев они ломаются и крошатся.
4. Вещества, входящие в состав покрытий
Из всех существующих в настоящее время видов покрытий наиболее востребованными являются пленочные покрытия, имеющие перед остальными целый ряд преимуществ. Всё большую популярность приобретают дисперсные пленочные покрытия.
В состав дисперсных покрытий обычно входят полимер, краситель и/или пигмент, скользящее вещество. В таблеточном производстве широко используется покрытие Opadry II [3,5]. В его состав входят в качестве пленкообразователя -гидроксипропилметилцеллюлоза, в качестве пластификатора — полиэтиленгликоль, придающий помимо пластифицирующего действия блеск таблетке, и триацетин, помимо пластифицирующего действия уменьшающий образование пены в процессе приготовления суспензии, пигменты — двуоксись титана, а также полисахариды: — лактоза, мальтодекстрин, полидекстроза. Преимуществами использования Opadry II перед традиционно используемыми пленкообразователями является — быстрота изготовления суспензии и легкость её нанесения, а также отсутствие в составе покрытия консервантов и отходов в виде нерастворимых осадков. Немаловажным является и сокращение времени нанесения покрытия за счет возможного увеличения концентрации суспензии, что облегчает нанесение оболочки на хрупкие и непрочные таблетки, а также на таблетки, содержащие влаго- и светочувствительные лекарственные вещества. Следует отметить также превосходное прилипание пленки к таблеткам, что находит применение в затруднительных случаях, в частности, при покрытии таблеток с гидрофобными лекарственными веществами (ибупрофен и др.). И наконец, следует отметить увеличение сроков годности таблеток с покрытием на основе Opadry II вследствие большей стабильности лекарственной формы.
Резюмируя вышеизложенное можно заключить, что расширение перечня вспомогательных веществ, применяемых при производстве таблеток, за счёт введения в их ассортимент современных наименований расширяет технологические возможности создания качественной таблетированной продукции, отвечающей всем существующим требованиям.
- Большаков В.Н. //Вспомогательные вещества в технологии лекарственных форм. — 1991. — Ленинград. — 48 с.
- Бюлер Ф. //Поливинилпирролидон для фармацевтической промышленности. 2001. — С. 20-40.
- Егошина Ю.А., Поцелуева Л.А., Галиуллина Т.Н. //Современные вспомогательные вещества в таблеточном производстве. Учебно-методическое пособие по фармацевтической технологии для иностранных студентов. — 2003. — Казань. — 15 с.
- Кульфиус Т. //Связующие агенты при влажной грануляции. — 2001. — С 10-15.
- Lehmann K. //The use of aqueosus synthetic polimer dispersions for coating pharmaceutical dosage form. 1973. — P.126-136.
Источник
Вспомогательные вещества для производства лекарственных средств
Вспомогательные вещества выполняют важнейшую роль в рецептурах и технологии готовых лекарственных препаратов независимо от вида лекарственной формы. При производстве таблеток они способствуют обеспечению однородности дозирования лекарственных веществ, механической прочности, распадаемости, растворимости, стабильности таблеток в процессе хранения, локализации места действия, скорости высвобождения действующих веществ, а также технологичности процесса таблетирования. Современные исследования по созданию новых и совершенствованию используемых технологий таблеток носят многоплановый характер. При этом проблема трения при таблетировании, его влияния на технологичность процесса, качество таблеток и пути его нивелирования с помощью вспомогательных веществ (ВВ), затрагивается только в фрагментарных исследованиях. Это актуализировало осмысление и систематизацию накопленных знаний относительно применения антифрикционных ВВ в производстве таблеток.
Контактирующими материалами процесса трения являются частицы прессуемой массы, таблетка, рабочая поверхность питателя и пресс-инструмента, т.е. трение происходит при всех операциях таблетирования. При дозировании, силы сцепления, в том числе и трения скольжения, между частицами компонентов обычно превосходят гравитационные силы, что проводит к образованию устойчивых скоплений, препятствующих сыпучести материала, и, как следствие, нарушению однородности массы таблеток. При прессовании, кроме внутреннего, прогрессирует внешнее трение прессуемого материала с поверхностью канала матрицы. Часть давления прессования тратится на его преодоление, происходит перераспределение плотности таблеток по высоте. Потери усилия прессования на внешнее трение компенсируются увеличением давления и зависят от коэффициента трения в паре материал порошка — материал матрицы, размера поперечного сечения и качества обработки ее стенок, наличия смазки. Трение на операции выталкивания таблетки из матрицы зависит от дисперсности порошка, формы и состояния поверхности частиц, механических свойств материала, упругих свойств пресс-формы и давления прессования. Доказано их влияние на неоднородное, самопроизвольное увеличение размеров таблетки при снятии с неё давления, однородность боковой поверхности, наличие сколов, микротрещин и механическую прочность таблеток. Особенно эта зависимость проявляется при высокоскоростном таблетировании материала с упругими свойствами. Кроме этого, компенсация трения увеличением давления обусловливает и повышение силовых условий работы пресс-инструмента, снижая его эксплуатационные характеристики и повышая возможность загрязнения таблеток продуктами износа [3, 4].
С целью уменьшения величины трения при прессовании используют различные технологические приемы, которые условно можно разделить на косвенные и прямые. К косвенным относятся приемы, направленные на снижение усилия прессования и устранение шероховатости поверхности частиц материала. Они предусматривают:
К прямым приемам относится введение в состав рецептур антифрикционных ВВ, которые подразделяют на глиданты, смазывающие (лубриканты ) и антиадгезивы. Однако четкого разделения функций этих ВВ нет, одно и то же вещество может использоваться с разными целями. Так, широко используемый тальк, влияет как глидант и смазывающее. Действие талька основано на взаимном скольжении слоев, состоящих из частиц прочной гексагональной формы. Частицы силиката в слоях связаны ван-дер-ваальсовыми силами сцепления, поэтому связь в слоях значительно прочнее, чем между слоями. Эффективность антифрикционного действия талька повышается по мере увеличения дисперсности. Об этом можно судить по меньшей силе выталкивания, требующейся в случае применения, например, высокодисперсного талька. Крахмал, кроме свойств глиданта, позволяет решать и другие производственные задачи при таблетировании, выполняя функции антиадгезива, дезинтегранта и связующего ВВ (в виде раствора).
Последние годы повышается обоснование применения в качестве глиданта (и антиадгезива) аэросила, связанное с вариабельностью лекарственных веществ (ЛВ) и соответственно их свойств. Путем химической модификации его гидрофильной поверхности получены и гидрофобные варианты, а механического воздействия на частицы — уплотненные и деструктурированные типы [9]. При этом все марки аэросила представляют собой белые мелкодисперсные аморфные порошки, состоящие из высокочистого кремния диоксида (не менее 99%) . Его широкое применение основано на таких свойствах, как чрезвычайно маленькие размеры частиц, их однородность и сферическая форма, высокая степень чистоты [5].Основой выбора марки аэросила для различных рецептур являются лиофильность и удельная поверхность (таблица).
Удельная поверхность некоторых марок аэросила
Удельная поверхность, м 2 /г
Удельная поверхность, м 2 /г
Аэросил R 812 S
Исследование влияния аэросила различных марок на снижение трения скольжения модельных ЛВ с различными свойствами позволило составить ряд предпочтительности — Аэросил R 972 (гидрофобный), 200W (уплотненный), 380 и 200 (гидрофильные).
При исследовании влияния количества Аэросила-200 и Аэросила-380 на снижение величины трения скольжения модельных порошкообразных ЛВ, нами подтверждены данные литературы, что эффективность применения аэросила тем выше, чем хуже сыпучесть модельной смеси. Показано, что чрезмерно малое, так и большое количество не эффективно влияет на сыпучесть смеси. Малое количество ведет к неравномерному обволакиванию прочих частиц коллоидным кремния диоксидом. Это, в свою очередь, ведет к недостаточному ослаблению сил притяжения между частицами и к плохой сыпучести. Слишком большое количество аэросила ведет к почти полному обволакиванию частиц коллоидным кремния диоксидом. При этом существенно возрастают силы притяжения между отдельными частицами аэросила, что не способствует снижению трения скольжения. Показано, что обоснованное количество аэросила позволило улучшить сыпучесть модельных порошкообразных смесей от 8 до 13%.
Согласно доступным данным литературы, исследования отечественных ученых по расширению ассортимента глидантов носят эпизодический характер. Одним из примеров этих немногочисленных работ является обоснование криопорошка, представляющего собой вещество природного происхождения,содержащего водоросли, и/или оболочки семян культурных растений, и/или глину.
Исследования смазывающих ВВ показывают, что универсальной смазки не существует. Их выбор зависит от свойств материала, метода производства таблеток, знаний и опыта разработчика. В качестве смазывающих веществ применяются жиры, жирные кислоты и их соли (кислота стеариновая, кальция и магния стеараты), тальк, углеводороды (вазелиновое масло) и некоторые ВМС (твин-80, ПЭГ-4000), количество которых регламентируется нормативными документами [8].
Полиэтиленгликоль 4000 и 6000, также известные как Carbowax 4000 и 6000, являются водорастворимыми смазочными материалами. Как правило, полиэтиленгликоль используют при влажном гранулировании в виде водных, спиртовых или водно- спиртовых растворов с различными связующими ВВ.
Минеральные масла очищенных нефтепродуктов являются эффективными смазывающими и антиадгезивами. Однако их применение ограничено, во-первых в связи с образующейся пятнистостью на поверхности таблеток после прессования и, во-вторых, с необходимостью прессования гранулята в течение 24 часов после приготовления, т.к. масло имеет тенденцию проникать в гранулы и терять эффективность смазывающего действия.
Основными представителями смазывающих ВВ остаются кислота стеариновая и ее соли, последние применяют в порошкообразном и гранулированном состоянии. Гранула стеарата представляет собой агломерат тонких первичных частиц, которые благодаря действию сдвига, постепенно, слоями распределяются по стенке матрицы, в результате образующаяся пленка обеспечивает смазывающий эффект достаточно долго. При изучении параметров влагосодержания, гигроскопичности и термической десорбции кальция стеарата и магния стеарата было установлено, что в отличие от кислоты стеариновой, они являются гигроскопичными соединениями и в условиях повышенной относительной влажности способны поглощать из воздуха влагу, находящуюся в соединениях в связанном и свободном состоянии. Данная влага испаряется в диапазоне температур 40-105°C. В зависимости от фирм производителей изученные образцы ВВ различаются по содержанию влаги и сорбционной емкости, что делает важным изучение этих параметров. Эндотермические эффекты для кальция стеарата (Тmax = 125,7°C) и магния стеарата (Тmax = 113°C) вызваны плавлением кристаллической структуры соединений и переходом ее в аморфное состояние. Следует учитывать, что по форме и размерам эти ВВ, в зависимости от производителя, тоже отличаются [1].
При разработке рецептуры рекомендуется обращать внимание на совместимость ВВ с активными компонентам. Несмотря на то что, как правило, лубриканты вводятся в сухую смесь в количестве 1-3%, в ряде случаев их металлосодержащие представители взаимодействуют с ЛВ. В качестве примера можно привести вещества, которые несовместимы с часто используемым магния стеаратом: аспартам, ацетилсалициловая кислота, некоторые витамины, большинство алкалоидов. В таких рецептурах используют лубриканты растительного происхождения, например — Sterotex, порошкообразная смесь триглицеридов жирных кислот соевого или хлопкового масел и зарегистрированная под торговой маркой Abitec Corporation.
Фармацевтическим концерном MERCK KGaA выпускаются растворимые в воде стеараты растительного происхождения под торговой маркой Parteck® LUB: CST — кальция стеарат; МST — магния стеарат и STА — кислота стеариновая. Стабильные размер частиц и площадь поверхности стеаратов марки Parteck® LUB способствуют формированию устойчивой смазки, а их эффективные смазывающие свойства гарантируют последовательные результаты. В фармацевтических рецептурах в Европе, США используется лубрикант французской компании Gattefosse Compritol® 888 ATO, (Glyceroli dibehenas), представляющий собой сложный эфир глицерина и остатков С22 жирных кислот. Compritol® 888 ATO характеризуется температурой плавления 69-74°С и частицами, близкими к сферической форме с размерами 30 мкм
Источник