Внедрение новых методик лекарственных средств

Внедрение новых методик лекарственных средств

Методология поиска новых биологически активных фармакологических веществ с рецепторной активностью

Проблема изыскания новых высокоэффективных фармакологических веществ по сей день не теряет своей актуальности. Причиной этому служит низкая эффективность или отсутствие таковой у широко известных лекарственных препаратов, применяемых для профилактики и терапии ряда патологических состояний, а также наличие побочных реакций, вызывающих дискомфортные ощущения у пациентов в период лечения.

Процесс создания лекарств требует колоссальных затрат времени и средств, не говоря о его трудоемкости. Крупные фармацевтические предприятия вкладывают миллионы, а иногда и миллиарды, долларов в исследования по разработке инновационного лекарственного препарата. В среднем, от идеи создания до внедрения препарата на рынок проходит от 5 до 15 лет. Конечный продукт является результатом объединения знаний в области медицины, химии, биологии и других наук, а также организации и создания всех условий для проведения необходимых экспериментальных исследований [1].

Согласно данным Всемирной организации здравоохранения, за последние пятьдесят лет средняя продолжительность жизни людей возросла. Не последнюю роль в этом сыграли достижения в области медицины и фармакологии. Причиной столь стремительного прогресса явилась интеграция новых технологий, в частности компьютерных, в научные исследования и разработку лекарственных препаратов, отвечающих современным фармакотерапевтическим стандартам и высоким требованиям к эффективности и безопасности [2, 5].

История фармакологии очень продолжительна и обширна. Древние люди, впервые столкнувшись с различными недугами, были вынуждены искать в окружающей среде вещества, способные в той или иной степени облегчить их состояние. Наиболее доступными оказались растительные объекты. Вещества природного происхождения не утратили свою необходимость и в настоящее время. На смену эмпирической терапии пришли синтетические препараты, что связано, в первую очередь, с бурным скачком в развитии химии во второй половине XIX в. Дальнейшее движение по пути развития привело ученых к открытию рецепторов и установлению их структуры. Данный факт является ключевым для рационального построения лекарственных средств, мощным способствующим фактором к которому послужило открытие учеными трехмерных структур белков-рецепторов и их комплексов с некоторыми лигандами.

Компьютерные технологии играют ведущую роль в конструировании лекарств, так как с их помощью можно ускорить процесс исследования, минимизировать ошибки и повысить результативность. Также активно используются достижения в области геномики и молекулярной биологии [4].

Целью настоящей статьи является обобщение и систематизация современных подходов к созданию новых лекарственных средств.

Компьютерное моделирование как метод конструирования лекарственных средств

Выбор типа моделирования зависит от имеющихся у исследователей сведений о пространственной структуре лиганда и рецептора-мишени.

Существует два основных типа моделирования: прямое и непрямое.

Прямое моделирование позволяет оценить степень сродства рецептора и лиганда. Комплементарность определенных структур активному центру рецептора можно оценить при помощи процедуры докинга. В этом случае на помощь ученым приходят специализированные базы данных, содержащие сведения об известных соединениях [3, 6].

Возможно также создание при помощи компьютерных программ гипотетической структуры молекул, которые в теории могут обладать высоким сродством к рецепторам того или иного типа. Это так называемые методы de novo. Их сущность заключается в подборе небольших фрагментов молекул с повышенной энергией связывания и минимальной энергией отталкивания в отношении активного центра рецептора. Путем постепенного присоединения фрагментов конструируется цельная молекула. Данный метод, несомненно, дает положительные результаты, однако, надежность оценки сродства не всегда высока.

Непрямое моделирование заключается в построении зависимостей «структура-активность» (QSAR) и фармакофорном моделировании. Фармакофорный анализ оценивает лиганд-рецепторное взаимодействие с позиции влияния на него функциональных групп молекул. Именно они отвечают за взаимосвязь структуры и активности.

Метод QSAR (Quantitative Structure – Activity Relationship) довольно успешно применяется уже на протяжении нескольких десятилетий. Он позволяет предсказать различные свойства соединений, исходя из их химической структуры. Для построения моделей в данном методе широко применяется математическая статистика [7].

Оптимизация процесса создания лекарственных средств

В процессе разработки лекарственных средств выделяют две основные стадии – доклинические и клинические исследования. Как важнейшая составляющая, стадия доклинических испытаний включает в себя следующие этапы:

– выявление мишени для лекарственного средства;

– оптимизацию соединения лидера;

– доклиническую оценку фармакологических свойств.

Выбор мишени осуществляется на основании имеющихся данных о конкретном заболевании. В настоящее время преимущество отдается геномике и протеомике, позволяющим точно выявить мишени в организме, отвечающие за патологический процесс. Множество фармацевтических компаний уже пользуются достижениями геномики. Помимо секвенирования генома, ведущего к открытию новых мишеней, используется позиционное клонирование и другие современные методики. Следует отметить, что при наличии достаточного количества процедур по выявлению мишеней, выбор действительно верных из них, становится все сложнее. Для этого производят процедуру валидации (target validation) [8, 9].

Нельзя также не отметить перспективы применения хемоинформатики. Эта область науки, находящаяся на пересечении химии и информатики, позволяет прогнозировать физико-химические свойства соединений, токсическую и биологическую активность и разрабатывать новые лекарственные препараты [10].

Соединением-лидером считается вещество, обладающее сродством к определенному рецептору и проявляющее фармакологическую активность. Для поиска таких соединений используются обширные базы данных, содержащие информацию о зависимости фармакологического эффекта от особенностей химической и пространственной структуры исследуемых субстанций. Наиболее часто используемыми и эффективными считаются электронные библиотеки на основе de novo дизайна.

Все базовые соединения подвергаются тестированию на наличие определенного типа активности. Данный процесс достаточно длительный и трудоемкий. Эффективность тотального скрининга невелика, несмотря на его возможность анализировать большое количество соединений с высокой надежностью. В настоящее время ученые все чаще обращаются к инновационным методикам, среди которых следует особо выделить скрининг на основе ЯМР, фармакофорный анализ и виртуальный скрининг [11].

Магниторезонансные методики, являясь высокочувствительными, дают возможность анализировать сложные смеси веществ и получать данные о связи лигандов с рецепторами даже при отсутствии начальной информации [12].

Читайте также:  Лечебная гимнастика при ишиасе воспалении седалищного нерва

Развитие компьютерных технологий позволяет более эффективно вести поиск соединений-лидеров в специализированных базах данных. Это во многом связано с сочетанием фармакофорного анализа и методов QSAR, позволяющих выявить требования, которым должны соответствовать искомые соединения [13].

Виртуальный скрининг как метод поиска соединений-лидеров объединяет в себе различные компьютерные технологии. Он особенно информативен в тех случаях, когда имеются сведения о химической структуре веществ в различных вариациях [14].

Таким образом, в арсенале ученых-исследователей имеется достаточное количество методов, охватывающих широкий круг проблем – от создания и совершенствования баз данных до анализа молекулярного подобия и построения моделей QSAR. Для анализа молекулярного подобия используются трехмерные дескрипторы молекулярной структуры. Актуальной на сегодняшний день является проблема поиска дескрипторов и обозначение границ их применимости.

После нахождения соединения-лидера проводится его оптимизация с целью усиления активности и избирательности действия, а также минимизации нежелательных побочных эффектов. Компьютерное моделирование помогает исключить заведомо бесперспективные соединения, что существенно ускоряет процесс оптимизации.

Важную роль в выборе метода оптимизации играет наличие сведений о пространственной структуре рецептора. Наличие такого типа информации дает возможность использования дизайна de novo. Дизайн лигандов, корректировка структуры комплекса вещество-рецептор приводят в дальнейшем к получению новых соединений-лидеров с заданными свойствами. Такие методики широко используются для создания лекарственных средств различных фармакологических групп, в том числе и препаратов терапии ВИЧ-инфекции [15].

При отсутствии сведений о пространственной структуре рецептора применяют метод QSAR, позволяющий установить зависимость между дескрипторами ряда близких по строению биологически активных соединений и их фармакологической активностью. Построение такого рода зависимостей помогает выявить и проанализировать факторы, обусловливающие возникновение того или иного эффекта в организме и дает возможность прогнозирования свойств новых соединений на основе общности химической структуры [16].

Помимо QSAR исследователи активно используют метод CoMFA (Comparative Molecular Field Analysis), позволяющий подобрать лиганд с определенным расположением радикалов, а также доноров или акцепторов водородной связи. Позже возникли такие методы как: CoMMA (Comparative Molecular Moment Analysis); WHIM (Weighted Holistic Invariant Molecular descriptors) [17].

Развитие компьютерных технологий, несомненно, внесло колоссальный вклад в создание инновационных лекарственных препаратов, однако, компьютерное моделирование не всегда гарантирует создание лекарственного средства.

Необходимо проведение доклинической оценки фармакологических свойств.

Наличие у вещества рецепторной активности далеко не во всех случаях приводит к его дальнейшему использованию в качестве лекарственного средства. Многие из веществ-кандидатов, успешно прошедших доклинические исследования, отсеиваются на этапе дорогостоящих клинических испытаний. Для минимизации затрат и сокращения сроков исследования необходимо научиться моделировать различные фармакокинетические и токсикологические свойства соединений. Моделирование свойств ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) позволяет из всего многообразия выделить только те вещества, которые обладают необходимыми фармакологическими характеристиками [18].

Серьезным этапом является перенос результатов исследований на человека. Существует ряд in silico методов оценки таких важнейших ADMET-свойств как биодоступность, степень связывания с белками плазмы крови, способность прохождения через барьеры и др. [19].

Сложность моделирования ADMET-свойств заключается в наличии множества взаимосвязанных физиологических процессов, протекающих в организме человека, и небольшом запасе экспериментальных данных. Однако, путем расширения научных знаний и перехода к построению моделей для предсказания тех или иных параметров возможно ускорение и улучшение процесса разработки лекарственных средств [20].

Подводя итог, следует отметить, что в настоящее время традиционный эмпирический синтез лекарственных средств отходит на второй план, уступая место инновационным технологиям. Широкое применение компьютерного моделирования, а также достижений в области геномики, протеомики, молекулярной биологии, фармакологии и медицины обусловливают переход науки на качественно новый уровень, что проявляется в возможности направленного синтеза лекарственных средств с заданными фармакокинетическими и фармакодинамическими показателями. Дальнейшее движение науки по пути прогресса позволит миниминизировать in vivo исследования и клинические испытания, сделав разработку лекарств более рациональной и эффективной.

Источник

Предмет, задачи фармакологии. Этапы создания новых лекарств

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

ПРЕДМЕТ, ЗАДАЧИ И МЕТОДОЛОГИЯ ФАРМАКОЛОГИИ

Фармакология (от греч. pharmacon – лекарство, яд; и logos — учение) – наука о взаимодействии лекарственных веществ и организма.

Основными задачами фармакологии является создание и обоснование рационального применения новых лекар­ственных средств, и изучение новых свойств уже извест­ных лекарственных препаратов.

Фармакология является самостоятельной наукой и со­ставной частью современной терапии, она выполняет роль связующего звена между теоретическими знаниями и практической областью медицины. Являясь областью активного информационного обмена между естественно­научной основой медицины – биологией, химией, фи­зиологией, морфологией и специальным медицинским знанием — терапией (клиническими дисциплинами), фи­тотерапией, фармацией, токсикологией, фармакология дает почувствовать огромную взаимную пользу одного знания для другого.

Фармакология имеет большое общебиологическое зна­чение. Раскрытие механизмов действия лекарственных веществ помогает расширить представления о химичес­кой сущности процессов, происходящих в живых клет­ках, механизмах регуляции функций систем организма. В этом случае лекарственные вещества выступают в роли фармакологических «зондов», помогающих оценить на­личие, направленность и выраженность ответных реак­ций со стороны клеток, тканей, органов и систем.

Вначале на экспериментальных животных, а затем в организме человека фармакология изучает взаимодей­ствие веществ любого происхождения с биологическими системами на различных уровнях организации: молекуляр­ном, субклеточном, клеточном, тканевом, органном, на уровне функциональных систем и целостного организма.

В фармакологии, как в медико-биологической науке, принято выделять три основные части: теоретическую, экспериментальную и клиническую. Теоретическая и экспериментальная части фармакологической науки составляют фундаментальную фармакологию. Экспе­риментальная фармакология является связующим звеном между теоретической и клинической фармакологией.

Предмет экспериментальной фармакологии составляет моделирование меха­низмов взаимодействия лекарственных средств с биологическими системами (организм человека или экспериментального животного) на различных уровнях (субклеточный, тканевой, органный, системный) и изучение возникающих при этом эффектов. В экспериментальной фармакологии, являющейся основой для решения новых задач в области фармакологической науки, можно выделить три основных методических подхода: биохимический; физиологический; морфо­логический.

Читайте также:  Эффективное народное средство для борьбы с тараканами

Используя биохимический подход, фармакология изучает природу реакций взаимодействия между лекарственным веществом и биомолекулами. Используя физиологический и морфологический подходы, фармакология анализирует из­менения функции и строения органов и систем, вызываемых фармакологичес­ким воздействием.

ИСТОЧНИКИ ПОЛУЧЕНИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Существуют различные источники, из которых современными технологичес­кими методами можно получить лекарственные вещества.

  1. Минеральные соединения (магния сульфат, натрия сульфат).
  2. Ткани и органы животных (инсулин, препараты гормонов щитовидной же­лезы, ферментные препараты, препараты, регулирующие пищеварение).
  3. Растения (сердечные гликозиды, морфин, резерпин).
  4. Микроорганизмы (антибиотики: пенициллины, цефалоспорины, макролиды и др.). В 40-х годах XX века была впервые разработана технология получения антибиотиков из почвенных грибов. С 80-х годов XX века разработана техноло­гия получения лекарственных средств методом генной инженерии (человеческие инсулины).
  5. Химический синтез (сульфаниламиды, парацетамол, кислота вальпроевая, новокаин, кислота ацетилсалициловая). С середины XIX века лекарственные ве­щества активно стали получать химическим путем. Большинство современных лекарственных веществ являются продуктами химического синтеза.

ЭТАПЫ СОЗДАНИЯ НОВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Разработка новых лекарственных средств осуществляется совместными уси­лиями многих отраслей науки, при этом основная роль принадлежит специа­листам в области химии, фармакологии, фармации. Создание нового лекарст­венного средства представляет собой ряд последовательных этапов, каждый из которых должен отвечать определенным положениям и стандартам, утвержден­ным государственными учреждениями – Фармакопейным Комитетом, Фармако­логическим Комитетом, Управлением МЗ РФ по внедрению новых лекарствен­ных средств.

Процесс создания новых лекарственных средств выполняется в соответствии с международными стандартами – GLP (Good Laboratory Practice – Качествен­ная лабораторная практика), GMP (Good Manufacturing Practice – Качественная производственная практика) и GCP (Good Clinical Practice – Качественная кли­ническая практика).

Знаком соответствия разрабатываемого нового лекарственного средства этим стандартам является официальное разрешение процесса их дальнейшего иссле­дования – IND (Investigation New Drug).

Получение новой активной субстанции (действующего вещества или комплек­са веществ) идет по трем основным направлениям.

Химический синтез лекарственных веществ

  • Эмпирический путь: скрининг, случайные находки;
  • Направленный синтез: воспроизведение структуры эндогенных веществ, хи­мическая модификация известных молекул;
  • Целенаправленный синтез (рациональный дизайн химического соединения), основанный на понимании зависимости «химическая структура – фармакологи­ческое действие».

Эмпирический путь (от греч. empeiria — опыт) создания лекарственных веществ основан на методе «проб и ошибок», при котором фармакологи берут ряд хими­ческих соединений и определяют с помощью набора биологических тестов (на молекулярном, клеточном, органном уровнях и на целом животном) наличие или отсутствие у них определенной фармакологической активности. Так, наличие противомикробной активности определяют на микроорганизмах; спазмолитичес­кой активности — на изолированных гладкомышечных органах (ex vivo); гипогликемической активности – по способности понижать уровень сахара в крови испытуемых животных (in vivo). Затем среди исследуемых химических соедине­ний выбирают наиболее активные и сравнивают степень их фармакологической активности и токсичности с существующими лекарственными средствами, кото­рые используются в качестве стандарта. Такой путь отбора активных веществ получил название лекарственного скрининга (от англ. screen — отсеивать, сорти­ровать). Ряд препаратов был внедрен в медицинскую практику в результате слу­чайных находок. Так было выявлено противомикробное действие азокрасителя с сульфаниламидной боковой цепью (красного стрептоцида), в результате чего по­явилась целая группа химиотерапевтических средств – сульфаниламиды.

Другой путь создания лекарственных веществ состоит в получении соедине­ний с определенным видом фармакологической активности. Он получил назва­ние направленного синтеза лекарственных веществ. Первый этап такого синтеза заключается в воспроизведении веществ, образующихся в живых организмах. Так были синтезированы адреналин, норадреналин, ряд гормонов, простагландины, витамины.

Химическая модификация известных молекул позволяет создать лекарствен­ные вещества, обладающие более выраженным фармакологическим эффектом и меньшим побочным действием. Так, изменение химической структуры ингибиторов карбоангидразы привело к созданию тиазидных диуретиков, обладающих более сильным диуретическим действием.

Введение дополнительных радикалов и фтора в молекулу налидиксовой кис­лоты позволило получить новую группу противомикробных средств – фторхинолонов с расширенным спектром противомикробного действия.

Целенаправленный синтез лекарственных веществ подразумевает создание веществ с заранее заданными фармакологическими свойствами. Синтез новых структур с предполагаемой активностью чаще всего проводится в том классе химических соединений, где уже найдены вещества, обладающие определенной на больной не знают, какой препарат применяется – новый, контрольный или плаце­бо, и тройным слепым (triple-blind) методом, когда ни врач, ни больной, ни орга­низаторы и статистики не знают назначенной терапии у конкретного пациента. Эту фазу рекомендуют проводить в специализированных клинических центрах. Данные, полученные в клинических испытаниях III фазы, являются основой для создания инструкции по применению препарата и важным фактором для при­нятия официальными инстанциями решения о его регистрации и возможности медицинского использования.

Исследования биоэквивалентности лекарственных препаратов

Оценка биоэквивалентности лекарственных препаратов является основным видом контроля качества воспроизведенных (генерических) препаратов -лекарственных препаратов, содержащих то же лекарственное вещество в той же дозе и лекарственной форме, что и оригинальный лекарственный препарат.

Два лекарственных препарата (в одной лекарственной форме) являются био-эквивалентными, если они обеспечивают одинаковую биодоступность лекар­ственного вещества и одинаковую скорость достижения максимальной концент­рации вещества в крови.

Исследования биоэквивалентности позволяют сделать обоснованные заклю­чения о качестве сравниваемых препаратов по относительно меньшему объему первичной информации и в более сжатые сроки, чем при проведении клиничес­ких исследований. В Российской Федерации исследования биоэквивалентности регламентируются «Методическими рекомендациями по проведению качествен­ных клинических исследований биоэквивалентности лекарственных препаратов».

Регистрация лекарственного препарата

Полученные в ходе исследований данные оформляются в виде соответствую­щих документов, которые направляются в государственные организации, регис­трирующие данный препарат и дающие разрешение на его медицинское приме­нение. В Российской Федерации регистрация лекарственных препаратов производится Министерством здравоохранения РФ.

Постмаркетинговые испытания

Регистрация препарата не означает, что исследования его фармакологических свойств прекращены. Существует IV фаза клинических испытаний, которая по­лучила название «постмаркетинговых исследований», т.е. IV фаза клинических ис­следований проводится после начала продажи препарата с целью получения более подробной информации о безопасности и эффективности препарата в различ­ных лекарственных формах и дозах, при длительном применении у различных групп пациентов, что позволяет более полно оценить стратегию применения пре­парата и выявить отдаленные результаты лечения. В исследованиях принимает участие большое количество пациентов, что позволяет выявить ранее неизвест­ные и редко встречающиеся нежелательные эффекты. Исследования IV фазы так­же направлены на оценку сравнительной эффективности и безопасности препа­рата. Полученные данные оформляются в виде отчета, который направляется в организацию, давшую разрешение на выпуск и применение препарата.

Читайте также:  Сосновые шишки лечебные свойства когда собирать

В том случае, если после регистрации препарата проводятся клинические ис­пытания, целью которых является изучение новых, незарегистрированных свойств, показаний, методов применения или комбинаций лекарственных ве­ществ, то такие клинические испытания рассматриваются, как испытания ново­го лекарственного препарата, т.е. считаются исследованиями ранних фаз.

правленностью действия. Примером может служить создание блокаторов Н2-гистаминовых рецепторов. Было известно, что гистамин является мощным стимулятором секреции хлористоводородной кислоты в желудке и что противогистаминные средства (применяемые при аллергических реакциях) не устраняют этот эффект. На этом основании был сделан вывод, что существуют подтипы гистаминовых рецепторов, выполняющих различные функции, и эти подтипы рецепторов блокируются веществами разной химической структуры. Была выдвинута гипотеза, что модификация молекулы гистамина может привести к созданию се­лективных антагонистов гистаминовых рецепторов желудка. В результате рацио­нального дизайна молекулы гистамина в середине 70-х годов XX века появилось противоязвенное средство циметидин — первый блокатор Н2-гистаминовых рецепторов.

Выделение лекарственных веществ из тканей и органов животных, растений и минералов

Таким путем выделены лекарственные вещества или комплексы веществ: гормоны; галеновы, новогаленовы препараты, органопрепараты и минеральные вещества.

Выделение лекарственных веществ, являющихся продуктами жизнедеятель­ности грибов и микроорганизмов, методами биотехнологии (клеточной и генной инженерии)

Выделением лекарственных веществ, являющихся продуктами жизнедеятельности грибов и микроорганизмов, занимается биотехнология.

Биотехнология использует в промышленном масштабе биологические системы и биологические процессы. Обычно применяются микроорганизмы, культу­ры клеток, культуры тканей растений и животных.

Биотехнологическими методами получают полусинтетические антибиотики. Большой интерес представляет получение в промышленном масштабе инсулина человека методом генной инженерии. Разработаны биотехнологические методы получения соматостатина, фолликулостимулирующего гормона, тироксина, стероидных гормонов.

После получения новой активной субстанции и определения ее основных фармакологических свойств она проходит ряд доклинических исследований.

Доклинические испытания

Помимо изучения специфической активности, во время доклинических испытаний в опытах на животных полученная субстанция исследуется на острую и хроническую токсичность; исследуется также ее влияние на репродуктивную функцию; субстанция исследуется на эмбриотоксичность и тератогенность; канцерогенность; мутагенность. Эти исследования проводятся на животных в соответствии со стандартами GLP. В ходе этих исследований определяют среднюю эффективную дозу (ЕД50 – доза, которая вызывает эффект у 50% животных) и среднюю летальную дозу (£Д50 — доза, которая вызывает гибель 50% животных).

Клинические испытания

Планирование и проведение клинических испытаний проводятся клиничес­кими фармакологами, клиницистами, специалистами по статистике. Эти испы­тания проводятся на основе системы международных правил GCP. В Российской

Федерации на основе правил GCP разработан и применяется стандарт отрасли «Правила проведения качественных клинических испытаний».

Правила GCP – это свод положений, в соответствии с которыми планируются и проводятся клинические испытания, а также анализируются и обобщаются их результаты. При следовании этим правилам полученные результаты действительно отражают реальность, а пациенты не подвергаются необоснованному риску, соблюдаются их права и конфиденциальность личной информации. Другими словами, GCP объясняет, как получать достоверные научные данные и заботиться при этом о благополучии участников медицинских исследований.

Клинические испытания проводятся в 4 фазы.

I фаза клинических испытаний проводится с участием небольшого числа добровольцев (от 4 до 24 человек). Каждое исследование проводится в одном центре, длится от нескольких дней до нескольких недель.

Обычно к I фазе относятся фармакодинамические и фармакокинетические исследования. В ходе испытаний I фазы исследуют:

  • фармакодинамику и фармакокинетику одной дозы и множественных доз при разных путях введения;
  • биодоступность;
  • метаболизм активной субстанции;
  • влияние возраста, пола, пищи, функции печени и почек на фармакокинетику и фармакодинамику активной субстанции;

• взаимодействие активной субстанции с другими лекарственными средствами.
В ходе I фазы получают предварительные данные о безопасности препарата и

дают первое описание его фармакокинетики и фармакодинамики у человека.

II фаза клинических испытаний предназначена для оценки эффективности активной субстанции (лекарственного вещества ) у больных с профильным заболеванием, а также для выявления отрицательных побочных явлений, связанных с применением препарата. Исследования II фазы проводят под очень строгим контролем и наблюдением на больных в группе 100—200 человек.

III фаза клинических испытаний представляет собой многоцентровые расширенные исследования. Они проводятся после получения предварительных резуль­татов, указывающих на эффективность лекарственного вещества, и их главная задача — получить дополнительные сведения по эффективности и безопасности различных лекарственных форм препарата, которые необходимы для оценки об­щего соотношения пользы и риска от его применения, а также для получения дополнительных сведений для составления медицинской маркировки. Проводит­ся сопоставление с другими препаратами этой группы. Эти исследования обычно охватывают от нескольких сотен до нескольких тысяч человек (в среднем 1000— 3000). В последнее время появился термин «мегаисследования», в которых могут принимать участие свыше 10 000 пациентов. В ходе проведения III фазы опреде­ляются оптимальные дозы и схемы введения, изучаются характер наиболее час­тых нежелательных реакций, клинически значимые лекарственные взаимодействия, влияние возраста, сопутствующих состояний и т.п. Условия исследований максимально приближены к реальным условиям применения препарата. Такие исследования вначале проводятся с использованием открытого метода (open) (врач и больной знают, какой препарат применяется – новый, контрольный или пла­цебо). Дальнейшие исследования проводятся одинарным слепым (single-blind) методом (больной не знает, какой препарат применяется — новый, контрольный или плацебо), двойным слепым (double-blind) методом, при котором ни врач, ни

Источник

Оцените статью