- ТАУРИН (TAURINE) ОПИСАНИЕ
- Фармакологическое действие
- Фармакокинетика
- Показания активного вещества ТАУРИН
- Режим дозирования
- Побочное действие
- Противопоказания к применению
- Применение при беременности и кормлении грудью
- Применение у детей
- Применение у пожилых пациентов
- Особые указания
- Лекарственное взаимодействие
- Таурин
- Эффекты и механизм действия таурина как лекарственного средства (реферат)
- Введение
- Цитопротекторная активность таурина
- Влияние таурина на сердечно-сосудистую систему
- Застойная сердечная недостаточность
- Гипертония
- Атеросклероз
- Ишемически-реперфузионное повреждение
- Аритмии
- Роль таурина при метаболических заболеваниях
- Сахарный диабет
- Заключение
ТАУРИН (TAURINE) ОПИСАНИЕ
Фармакологическое действие
Таурин является естественным продуктом обмена серосодержащих аминокислот: цистеина, цистеамина, метионина. Таурин обладает осморегуляторным и мембранопротекторным свойствами, положительно влияет на фосфолипидный состав мембран клеток, нормализует обмен ионов кальция и калия в клетках. У таурина выявлены свойства тормозного нейромедиатора, он обладает антистрессорным действием, может регулировать высвобождение ГАМК, адреналина, пролактина и других гормонов, а также регулировать ответы на них. Участвуя в синтезе белков дыхательной цепи в митохондриях, таурин регулирует окислительные процессы и проявляет антиоксидантные свойства; влияет на ферменты, такие как цитохромы, ответственные за метаболизм различных ксенобиотиков.
Уучшает метаболические процессы в сердце, печени и других органах и тканях. При хронических диффузных заболеваниях печени увеличивает кровоток и уменьшает выраженность цитолиза. Применение таурина при сердечно-сосудистой недостаточности ведет к уменьшению застойных явлений в малом и большом кругах кровообращения: снижается внутрисердечное диастолическое давление, повышается сократимость миокарда (максимальная скорость сокращения и расслабления, индексы сократимости и релаксации). Умеренно снижает АД у пациентов с артериальной гипертензией и практически не влияет на его уровень у пациентов с сердечно-сосудистой недостаточностью с пониженным АД. Уменьшает побочные явления, возникающие при передозировке сердечных гликозидов и блокаторов медленных кальциевых каналов, снижает гепатотоксичность противогрибковых препаратов. Повышает работоспособность при тяжелых физических нагрузках.
При сахарном диабете приблизительно через 2 недели после начала применения таруина снижается концентрация глюкозы в крови. Замечено также значительное уменьшение концентрации триглицеридов, в меньшей степени — концентрации холестерина, уменьшение атерогенности липидов плазмы. При длительном применении (около 6 месяцев) отмечено улучшение микроциркуляторного кровотока глаза.
Стимулирует репаративные и регенерационные процессы при заболеваниях дистрофического характера и/или заболеваниях, сопровождающихся резким нарушением метаболизма глазных тканей.
Фармакокинетика
После однократного приема внутрь в дозе 500 мг таурин через 15-20 мин определяется в крови, достигая C max через 1.5-2 ч. Полностью выводится через сутки.
Показания активного вещества ТАУРИН
Для приема внутрь: сахарный диабет 2 типа, в т.ч. с умеренной гиперхолестеринемией; сахарный диабет 1 типа; сердечно-сосудистая недостаточность различной этиологии; интоксикация, вызванная сердечными гликозидами; в качестве гепатопротектора у пациентов, принимающих противогрибковые препараты.
Для применения в офтальмологии: дистрофические поражения сетчатки, в т.ч. наследственные тапеторетинальные абиотрофии, дистрофия роговицы, катаракта (старческая, диабетическая, травматическая, лучевая), а также травмы роговицы (в качестве стимулятора репаративных процессов).
Открыть список кодов МКБ-10
Код МКБ-10 | Показание |
E10 | Сахарный диабет 1 типа |
E11 | Сахарный диабет 2 типа |
H18.4 | Дегенерация роговицы |
H18.5 | Наследственные дистрофии роговицы |
H25 | Старческая катаракта |
H26 | Другие катаракты |
I50.0 | Застойная сердечная недостаточность |
S05 | Травма глаза и глазницы |
T46.0 | Отравление сердечными гликозидами и препаратами аналогичного действия |
Режим дозирования
Режим дозирования устанавливают индивидуально, в зависимости от показаний и применяемой лекарственной формы.
Рекоменудемая доза для приема внутрь — по 250-500 мг 2 раза/сут.
Побочное действие
Противопоказания к применению
Применение при беременности и кормлении грудью
Применение у детей
Противопоказано применение у детей и подростков в возрасте до 18 лет (эффективность и безопасность не установлены).
Применение у пожилых пациентов
Возможно применение у пациентов пожилого возраста по показаниям, в рекомендуемых дозах и схемах.
Особые указания
На фоне приема таурина следует уменьшать дозу сердечных гликозидов (иногда в 2 раза), в зависимости от чувствительности пациентов к сердечным гликозидам. Это же правило относится к блокаторам медленных кальциевых каналов.
Не следует превышать максимальные сроки и рекомендуемые дозы без согласования с врачом.
Имеются данные об эффективности таурина в качестве средства, снижающего внутриглазное давление у больных с глаукомой.
Лекарственное взаимодействие
Таурин усиливает инотропный эффект сердечных гликозидов.
Источник
Таурин
Таурин — сульфокислота, которая образуется в организме из аминокислоты цистеина в печени и других органах. Его также называют серосодержащей аминокислотой.
Таурин составляет около 50% от общего количества свободных аминокислот, содержащихся в сердце, поэтому он крайне важен для профилактики и восстановления при заболеваниях сердечно-сосудистой системы. Он также играет значимую роль в правильном формировании почек.
Таурин важен для развития младенцев, поэтому входит в состав грудного молока и заменяющих его детских смесей.
Впервые вещество было выделено из желчи крупного рогатого скота.
Польза таурина для человеческого организма:
- Регуляция уровня холестерина в крови.
- Усвоение жирорастворимых витаминов.
- Помощь в выполнении биологической роли в организме калию, кальцию и магнию.
- Защита клеточных мембран от повреждений.
- Обеспечение здорового роста волос.
- Нейтрализация ядов и токсинов, попадающих в организм из окружающей среды.
- Увеличение подвижности сперматозоидов.
- Формирование сетчатки глаза.
Таурин оказывает благоприятное воздействие при отеках, проблемах с сердцем, гипертонии и гипогликемии. Укрепляет общий иммунитет, повышая фагоцитарную и бактерицидную эффективность нейтрофилов. Полезен для профилактики болезни Альцгеймера. Вещество также является тормозным нейромедиаторов в нервной системе.
- молоко и молочные продукты;
- птица (индейка и курица);
- говядина;
- рыба (тунец, красная рыба) и морепродукты (моллюски, устрицы);
- яйца.
Важно знать, что термическая обработка (кипячение, варка) ведет к существенным потерям таурина в продуктах.
Дефицит вещества может приводить к проблемам со зрением, снижению иммунитета, мышечной слабости, раздражительности.
Сейчас таурин стал популярным компонентом не только БАД, но и энергетических напитков, и спортивного питания.
Существует таурин в виде глазных капель, которые применяют при дистрофии сетчатки.
Норма потребления для взрослого человека — до 3 грамм вещества в сутки.
Источник
Эффекты и механизм действия таурина как лекарственного средства (реферат)
*Импакт фактор за 2018 г. по данным РИНЦ
Читайте в новом номере
Таурин — β-аминокислота, содержащаяся в большинстве клеток организма и обладающая цитопротекторной активностью. У некоторых видов животных таурин является незаменимым жизненно необходимым веществом, у человека — условно незаменимым, однако в клетках, где таурин отсутствует, обнаружены серьезные патологические изменения. На основании изученных фактов о таурине возрастает интерес к возможностям его применения в качестве лекарственного средства. Вслед за выявлением эффективности таурина при застойной сердечной недостаточности (ЗСН) начались исследования по изучению его действия при других заболеваниях. На сегодняшний день таурин одобрен для лечения ЗСН в Японии. Считается перспективным его применение для лечения ряда других заболеваний. В настоящем обзоре обобщены результаты исследований, подтверждающие роль таурина в лечении сердечно-сосудистых (ЗСН, гипертонии, атеросклероза, ишемически-реперфузионного повреждения, аритмий) и метаболических (митохондриальной болезни, сахарного диабета и ожирения) заболеваний. В обзоре приведены данные как экспериментальных работ на животных моделях, так и клинических исследований, также освещены функции таурина (антиоксидантная; регулирование энергетического метаболизма, экспрессии генов, гомеостаза кальция; ослабление стресса эндоплазматического ретикулума), лежащие в основе его терапевтических эффектов.
Ключевые слова: таурин, цитопротекция, антиоксидантные свойства, сердечно-сосудистые заболевания, метаболические заболевания.
Для цитирования: Эффекты и механизм действия таурина как лекарственного средства (реферат). РМЖ. 2020;6:10-14.
Effects and Mechanisms of Taurine as a Therapeutic Agent (report)
Taurine is a β-amino acid found in most cells with diverse cytoprotective activity. In some species, taurine is an essential nutrient but in man it is considered a semi-essential nutrient, although cells lacking taurine show major pathology. These findings have spurred interest in the potential use of taurine as a therapeutic agent. The discovery that taurine is an effective therapy against congestive heart failure (CHF) led to the study of taurine as a therapeutic agent against other disease conditions. Today, taurine has been approved for the treatment of CHF in Japan and shows promise in the treatment of several other diseases. The present review summarizes studies supporting a role of taurine in the treatment of cardiovascular disease (CHF, hypertension, atherosclerosis, ischemic reperfusion injury, arrhythmia) and metabolic diseases (mitochondrial diseases — MELAS, diabetes mellitus and obesity). The review covers both experimental studi es on animal models and clinical trials, and addresses the functions of taurine (regulation of antioxidation, energy metabolism, gene expression, ER stress, quality control and calcium homeostasis) underlying its therapeutic actions.
Keywords: taurine, cytoprotection, antioxidation, cardiovascular diseases, metabolic diseases.
For citation: Effects and Mechanisms of Taurine as a Therapeutic Agent (report). RMJ. 2020;6:10–14.
Введение
Таурин — это β-аминокислота, обнаруженная в большинстве клеток организма в очень высоких концентрациях, особенно в возбудимых тканях. Хотя таурин выполняет у млекопитающих множество функций, особое внимание исследователей привлекают его цитопротекторные свойства, т. к. они значительно изменяют состояние здоровья и нутритивный статус субъекта. Способность таурина регулировать фундаментальные процессы, протекающие в клетке, изменяя в ней баланс жизни и смерти, вызвала интерес к изучению его физиологических функций. Результаты этих научных работ стимулировали проведение исследований по изучению терапевтических эффектов таурина и его нутритивной ценности, из которых сделаны обнадеживающие выводы [1, 2]. Особого внимания заслуживает исследование Всемирной ассоциации здравоохранения (World Health Association) с участием 50 групп населения в 25 странах, которое выявило, что повышенное потребление таурина связано со снижением риска развития артериальной гипертензии и гиперхолестеринемии [3, 4]. Прием таурина также приводит к снижению индекса массы тела и уровня маркеров воспаления у женщин с ожирением [5]. Таким образом, цитопротекторное действие таурина способствует улучшению здоровья людей.
Цитопротекторная активность таурина
В настоящем обзоре рассматриваются механизмы, лежащие в основе цитопротекторной активности таурина (табл. 1), и его влияние на течение ряда заболеваний.
Влияние таурина на сердечно-сосудистую систему
Застойная сердечная недостаточность
Таурин одобрен к применению для лечения застойной сердечной недостаточности (ЗСН) в Японии [17]. Как и другие лекарственные препараты, использующиеся для лечения ЗСН, таурин не только уменьшает симптомы (одышку при физической нагрузке и отеки), но также устраняет или уменьшает потребность в применении других препаратов, таких как дигоксин [17]. Таурин обладает умеренным положительным инотропным действием и способствует натрийурезу и диурезу, однако его основной терапевтический эффект при постоянном приеме заключается в уменьшении действия норадреналина и ангиотензина II, которые играют роль в снижении работоспособности миокарда через повышение давления постнагрузки, в ремоделировании желудочков и перераспределении жидкости. Таурин эффективно ослабляет нежелательные эффекты норадреналина благодаря способности уменьшать избыток катехоламинов (через изменения в транспорте ионов Ca 2+ ) и ослаблять передачу сигналов клетками (посредством изменений в транспорте ионов Ca 2+ , содержании активных форм кислорода и фосфорилировании белков). Хотя в недавних исследованиях было показано улучшение переносимости физической нагрузки у пациентов с ЗСН при использовании таурина [18], остается неизвестным, снижает ли таурин риск развития сердечной недостаточности в общей популяции. Кроме того, не изучен вопрос снижения уровня смертности пациентов с ЗСН при приеме таурина. Есть основания полагать, что таурин может увеличить продолжительность жизни пациентов с ЗСН, поскольку он повышает содержание высокоэнергетических фосфатов в миокарде, что является важной детерминантой смертности среди пациентов с ЗСН [8].
Гипертония
На нескольких животных моделях показано, что применение таурина предотвращает развитие артериальной гипертензии, причем снижение артериального давления (АД), по-видимому, опосредовано сочетанием уменьшения содержания ионов Ca 2+ , снижения окислительного стресса, симпатической и воспалительной активности, а также улучшения почечной функции [19].
Результаты двух клинических исследований подтверждают, что прием таурина приводит к снижению АД у пациентов с артериальной гипертензией [20, 21]. Katakawa et al. (2016) [20] объяснили это улучшением эндотелиальной функции вследствие уменьшения окислительного стресса, Sun et al. (2016) [21] — сосудорасширяющим действием таурина. В исследовании Sun et al. показано, что у пациентов с нормальным и высоким нормальным АД прием таурина (1,6 г/день) в течение 12 нед. привел к снижению систолического АД на 7,2 мм рт. ст., диастолического АД — на 4,7 мм рт. ст., причем эффективность таурина была выше у лиц с более высоким АД. Концентрация таурина в плазме повысилась в 1,5 раза, что коррелировало со снижением АД, а также соответствовало результатам ранее проведенного эпидемиологического исследования Yamori et al. (2010) [22], установивших, что у людей, потреблявших больше таурина, наблюдалось более низкое АД. Кроме того, Ogawa et al. [23] ранее выявили, что уровень таурина в плазме снижается у пациентов с эссенциальной гипертонией. На животных моделях было также показано, что дефицит таурина ускоряет развитие артериальной гипертензии у крыс с одной почкой, находившихся на диете с высоким содержанием соли. Выявлена отрицательная корреляция между содержанием таурина в плазме и АД у крыс со спонтанной гипертонией. В клиническом исследовании Sun et al. [21] связывали снижение АД при употреблении таурина с улучшением потокзависимой и нитроглицерин-зависимой вазодилатации, чего не наблюдалось при приеме плацебо. Помимо повышения уровня таурина в плазме, наблюдалось увеличение содержания H2S, что способствовало снижению АД путем ингибирования сигнального каскада в сосудистой сети, индуцированного ионными каналами с транзиторным рецепторным потенциалом 3 (transient receptor potential channel 3). Необходимо дальнейшее исследование влияния уровня H2S на АД в сравнении с влиянием известных регуляторов сосудистой функции (ионов Ca 2+ , нейрогуморальных факторов и оксида азота).
Атеросклероз
Существует несколько возможных механизмов уменьшения атерогенеза при приеме таурина.
Во-первых, во многих исследованиях на животных с атеросклерозом применение таурина способствовало снижению уровня холестерина в сыворотке крови. Во время снижения уровня сывороточного холестерина уровень печеночного холестерина уменьшался быстрее, в основном из-за увеличения активности 7α-гидроксилазы, которая ускоряет деградацию холестерина. Так как существовала корреляция между более низким уровнем холестерина в сыворотке крови и лечебной дозой таурина, то предполагалось, что усиление экспрессии гена CYP7A1 в печени играло роль в регулировании сывороточного уровня холестерина. Также лечение таурином связано с уменьшением активности 3-гидрокси-3-метилглутарил-КоА-редуктазы [24].
Во-вторых, было показано, что происходящий в течение 24 ч контакт клеток печени со средой, содержащей таурин, приводит к снижению биосинтеза сложных эфиров холестерина и триглицеридов. Поскольку содержание в печени триглицеридов и эфиров холестерина детерминирует сборку липопротеинов в эндоплазматическом ретикулуме печени, таурин специфично подавляет сборку и секрецию липопротеинов, содержащих структурный белок аполипопротеин В100 (апоВ100) [24, 25]. АпоВ100 является первичным структурным белком как липопротеинов низкой плотности (ЛПНП), так и их предшественников — липопротеинов очень низкой плотности.
В-третьих, таурин защищает эндотелиальные клетки сосудистой ткани от индуцированной глюкозой и окисленными ЛПНП токсичности, являющейся ранним этапом развития атеросклероза [26]. Возможно, таурин также защищает эндотелиальные клетки от индуцированного гомоцистеином стресса эндоплазматического ретикулума и апоптоза за счет уменьшения гипергомоцистеинемии [27].
В-четвертых, таурин подавляет пролиферацию гладкомышечных клеток сосудов, вызванную тромбоцитарным фактором роста ВВ (platelet-derived growth factor-BB, PDGF-BB), которая играет важную роль в развитии атеросклероза [28]. Таурин изменяет активность фосфатазы, которая дефосфорилирует рецептор PDGF-β (сильный хемоаттрактант и пролиферативный фактор для гладкомышечных клеток сосудов).
В-пятых, таурин уменьшает экспрессию рецепторов окисленных липопротеинов низкой плотности (которая опосредует поглощение окисленных ЛПНП эндотелиальными клетками) и снижает частоту стеноза у кроликов с оксидативным стрессом при баллонном повреждении подвздошной артерии [29].
Наконец, в-шестых, ингибирование атеросклероза может происходить благодаря противовоспалительному действию таурина. В эпидемиологическом исследовании WHO-CARDIAC было показало, что включение в диету таурина коррелирует со снижением смертности у пациентов с ишемической болезнью сердца [30]. Elvevoll et al. (2008) [31] выявили, что таурин усиливает эффективность омега-3 жирных кислот в отношении снижения уровня общего холестерина, ЛПНП и триглицеридов.
Ишемически-реперфузионное повреждение
Такие эффекты таурина, как антиоксидантный эффект, модуляция ионов Ca 2+ , осморегуляция, регулирование фосфорилирования белков и высокоэнергетических фосфатов, влияют на исход ишемически-реперфузионного повреждения (ИРП). На сегодняшний день использование таурина ограничено операциями трансплантации сердца и аортокоронарного шунтирования (АКШ). В нескольких работах показана польза применения таурина как компонента кардиоплегических растворов или насыщения сердец таурином до их использования в качестве донорских. Помимо оксидативного стресса и отека, снижение уровня таурина при ИРП приводит к снижению уровня ионов Na + , которые уменьшают осмотический стресс и перегрузку ионами Ca 2+ [16, 32]. Кроме того, быстрая внутривенная инфузия таурина перед АКШ предотвращает оксидативный стресс и некроз клеток [33].
Аритмии
Таурин обладает антиаритмическим действием при использовании ряда проаритмогенных средств (дигоксин, адреналин, уабаин, хлорид цезия). Этот эффект таурина вероятнее всего связан с модуляцией ионов K + , Na + и Ca 2+ . Пероральное применение таурина и L-аргинина купировало аритмии у пациентов [33], но в настоящее время таурин не используется в лечении аритмий.
Роль таурина при метаболических заболеваниях
Митохондриальная болезнь (MELAS)
Характерные симптомы MELAS (митохондриальная энцефаломиопатия, лактатацидоз, инсультоподобные эпизоды — mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) также развиваются при дефиците таурина [34], что объясняется сходством патофизиологии этих двух состояний. MELAS вызывается специфическими точечными мутациями в области ДНК, кодирующей тРНК лейцина (tRNA Leu(UUR) ) [8]. Мутации, по-видимому, изменяют структуру тРНК, предотвращая конъюгацию таурина с уридиновым основанием tRNA Leu(UUR) . Модификация уридинового основания изменяет взаимодействие кодона UUG с антикодоном AAU tRNA Leu(UUR) , тем самым изменяя декодирование UUG [35]. Дефицит таурина, по-видимому, также приводит к уменьшению образования конъюгата таурина, 5-тауринометилуридин-tRNA Leu(UUR) , что связано с уменьшением содержания митохондриального таурина [8]. Дефицит таурина уменьшает экспрессию UUG-зависимых белков, включая ND6, субъединицу комплекса I. Поскольку ND6 играет важную роль в сборке комплекса I, таурин-опосредованное снижение уровня ND6 приводит к состояниям, отмеченным при MELAS: лактоацидозу, снижению активности комплекса I и потреблению кислорода. Нарушение функции дыхательной цепи приводит к повышению продукции супероксида и снижению продукции АТФ, что играет центральную роль в развитии миопатии и энцефалопатии при MELAS.
Сахарный диабет
Уровень таурина в плазме и тромбоцитах снижен у пациентов с сахарным диабетом 1 типа (СД1). При обследовании 711 пациентов с избыточным весом и СД выявлено, что уровень таурина в плазме связан со снижением чувствительности к инсулину [36]. Действительно, в большинстве основных органов-мишеней при СД (почки, сетчатка и нейроны) наблюдается опосредованное гипергликемией снижение содержания таурина [37]. При СД1 исходно наблюдается дефицит инсулина, что замедляет метаболизм глюкозы и повышает метаболизм жирных кислот, в то время как на фоне дефицита таурина выявлено нарушение функции дыхательной цепи, усиление гликолиза и снижение окисления глюкозы и жирных кислот [9]. Таурин необходим для нормального функционирования β-клеток. Так, отмечено, что количество панкреатических β-клеток уменьшается у 12-месячных мышей с дефицитом таурина (линия TauTKO).
При СД организм животного с возрастом претерпевает патологические изменения, поскольку окислительное повреждение митохондрий приводит к нарушению функции дыхательной цепи на поздних стадиях заболевания. Также на функцию митохондрий и биогенез влияют диета и физическая активность. Поэтому при старении и модификации диеты выявляются схожие черты, присущие и СД, и дефициту таурина. В связи с этим интересен факт [38], что дефицит таурина является необходимым условием для создания модели диабетической нефропатии.
Накоплены убедительные данные об улучшении симптомов, ассоциированных с СД, ожирением и метаболическим синдромом, при использовании таурина [37]. В ряде исследований на животных, особенно при СД2, лечение таурином приводило к уменьшению степени гипогликемии, что снижало риск диабетических осложнений [39].
В регуляции гипергликемии у животных с СД, получающих таурин, могут быть задействованы несколько механизмов. Во-первых, таурин улучшает функцию дыхательной цепи и повышает продукцию АТФ, что улучшает функцию β-клеток поджелудочной железы и секрецию инсулина [8, 40]. Во-вторых, гипергликемия и гиперлипидемия связаны с повышением образования активных форм кислорода в митохондриях. В β-клетках поджелудочной железы образование активных форм кислорода, опосредованное жирными кислотами, по-видимому, снижает секрецию инсулина, что компенсируется при лечении таурином. В-третьих, дисфункция митохондрий может провоцировать инсулинорезистентность (ИР) [46]. Haber et al. (2003) [41] выявили, что применение таурина предотвращает ИР и окислительный стресс, индуцированные гипергликемией. Таким образом, таурин предотвращает развитие осложнений СД2, однако механизм остается неясным во многом потому, что невозможно отделить влияние таурина на митохондрии от его влияния на секрецию и действие инсулина.
На стрептозотоцин-индуцированной модели СД1 было показано, что уровень глюкозы в плазме оставался неизменным при лечении таурином, однако тяжесть осложнений СД1 была меньше, что объясняется уменьшением клеточных стрессов (ER, окислительного и воспалительного) и митохондриальной дисфункции [37]. Trachtman et al. (1995) [42] первыми установили эффективность таурина в отношении снижения риска развития диабетических осложнений. Так, у самцов крыс, которым вводили стрептозотоцин, развивалась диабетическая нефропатия (характеризующаяся повышенной скоростью клубочковой фильтрации, гипертрофией клубочков, протеинурией и альбуминурией), при этом введение таурина привело к снижению протеинурии на 50%, значительному уменьшению гипертрофии клубочков и тубулоинтерстициального фиброза. Поскольку таурин также препятствует повышению в корковом веществе почки уровня малонового диальдегида (маркера окислительного стресса) и продуктов окисления гликоля (маркеров конечных продуктов гликирования), защитные эффекты таурина были объяснены подавлением окислительного стресса и гликирования. Ikubo et al. (2011) [43] обнаружили, что у крыс с СД, получавших стрептозотоцин, развивались сосудистые дефекты, связанные с окислительным стрессом, без изменения уровня глюкозы в крови. Таурин также препятствует апоптозу в клеточных моделях глюкозотоксичности [26].
Ожирение представляет собой расстройство, включающее ИР, гиперлипидемию, гипергликемию и воспалительные реакции, связанные с увеличением числа адипоцитов. Таурин показал эффективность в подавлении воспалительных реакций и снижении массы тела на фоне ожирения. Эти эффекты и их механизмы рассмотрены в обзоре Murakami (2015) [44].
Заключение
Таурин, 2-аминоэтансульфоновая кислота, является эндогенным конечным метаболитом, который распределяется в различных тканях в высоких концентрациях. Данная серосодержащая аминокислота синтезируется из цистеина и выводится из организма без дальнейшего метаболизма. С момента открытия таурина в 1827 г. многие его функции изучались в научных работах. Цитопротекторное действие таурина способствует улучшению клинического состояния человека через различные механизмы, в т. ч. антиоксидантную активность, продукцию энергии, гомеостаз ионов Ca 2+ и осморегуляцию. Сочетание одного или нескольких из этих цитопротекторных эффектов приводит к уменьшению патологических изменений и симптомов множества заболеваний при применении таурина, включая патологию сердечно-сосудистой системы и нарушение обмена веществ. Лечение таурином также приводит к снижению тяжести воспалительных заболеваний. Картина дефицита таурина напоминает картину MELAS, т. к. в обоих случаях нарушается функция дыхательной цепи. Поскольку таурин является естественным для организма веществом, оказывает небольшое число побочных эффектов и играет фундаментальную роль в функционировании большинства клеток млекопитающих, то перспектива применения его как эффективного лекарственного средства представляется обнадеживающей. Хотя клиническая оценка применения таурина была ограничена небольшим числом заболеваний, он уже одобрен для применения при ЗСН в Японии. Таким образом, таурин является условно незаменимым жизненно важным для человека веществом с разнообразными цитопротекторными и терапевтическими эффектами.
Реферат подготовлен редакцией «РМЖ» по материалам статьи Schaffer S., Kim H.W. Effects and Mechanisms of Taurine as a Therapeutic Agent. Biomol Ther (Seoul). 2018;26(3):225–241. DOI: 10.4062/biomolther.2017.251.
Только для зарегистрированных пользователей
Источник