Степень дисперсности лекарственных веществ
Суспензии как лекарственная форма характеризуются рядом преимуществ. На долю суспензий, выпускаемых отечественной фармацевтической промышленностью, приходится около 1% от общей массы лекарственных препаратов. Такое положение объясняется трудностями по обеспечению стабильности суспензии, не обеспечивающей точности их дозирования. Применение суспензий в фармации дает возможность вводить твердые, не растворимые в дисперсионной среде вещества в жидкую или вязкую дисперсионную среду, обеспечивая при этом большую суммарную поверхность лекарственного вещества и, следовательно, большую терапевтическую активность, а также позволяет получать препараты пролонгированного действия. В качестве примера можно привести такой лекарственный препарат, как суспензия цинк-инсулина. Этот препарат оказывает фармакологический эффект в течение 24-36 ч по сравнению с растворами инсулина, который действует только в течение 6 часов. Кроме возможности пролонгированного действия, характерным преимуществом в сравнении с другими лекарственными формами (порошки, таблетки), суспензии позволяют обеспечить более выраженный фармакологический эффект; маскировку неприятного вкуса и запаха, удобство в применении, что важно особенно в педиатрии [4, 5].
Наибольшее распространение получили суспензии для внутреннего употребления. Примером таких отечественных препаратов являются суспензия феноксиметилпенициллина, дексаметазона, тестостерона пропионата, ацикловира, ко-тримоксазола, гризеофульвина, ампициллина, сульфадимезина, норсульфазола, за рубежом выпускаются суспензии ампициллина, цефалексина, фузидина, эритромицина, «Алмагель», «Маалокс», «Гелусил» и мн. др. В ряде случаев при назначении лекарственных веществ в форме суспензий снижается отрицательное воздействие желудочного сока на лекарственные вещества.
Цель исследований. Несмотря на множество преимуществ суспензий, они имеют и ряд недостатков, в частности: неустойчивость суспензий при хранении и вследствие этого низкий срок годности; высокая зависимость степени фармакологического эффекта от технологии, вспомогательных веществ и др. В связи с чем задачей настоящего исследования является разработка комплексного подхода к созданию суспензий.
Результаты исследования и их обсуждение
Неустойчивость суспензий характеризуется двумя видами — агрегативной и седиментационной. Агрегативная (конденсационная) устойчивость — это способность частиц дисперсной фазы противостоять агрегации (слипанию) [8, 9, 10]. Агрегативная устойчивость суспензий является результатом действия сил различной природы, препятствующих слипанию частиц:
1) отталкивания, обусловленного двойным электрическим слоем;
2) «энтропийного» отталкивания, проявляющегося, когда частицы сближаются друг с другом на такие расстояния, при которых адсорбированные на них молекулы поверхностно активных веществ начинают задевать друг друга углеводородными цепями, находящимися в состоянии микроброуновского движения;
3) отталкивания, обусловленного сольватными оболочками. Этот вид отталкивания возникает между частицами, если на их поверхности адсорбируются молекулы растворителя, образуя сольватный слой толщиной в один-два молекулярных диаметра. Образующиеся сольватированные суспензии агрегативно устойчивы без специальных методов стабилизации.
Кинетическая (седиментационная) устойчивость — это способность дисперсной системы сохранять равномерное распределение частиц по всему объему дисперсной фазы. Суспензии являются кинетически неустойчивыми системами. Частицы суспензий по сравнению с истинными и коллоидными растворами имеют довольно крупные размеры, которые под воздействием силы тяжести обладают способностью к седиментации, т.е. опускаются на дно или всплывают, в зависимости от относительной плотности дисперсной фазы и дисперсионной среды. Используемая в настоящее время теория седиментации основана на уравнении Стокса, которая справедлива для одиночной частицы. Реальные скорости осаждения могут значительно отличаться от стоксовской скорости, особенно для густой полидисперсной суспензии. Это связано с тем, что частицы, движущиеся с разными скоростями и на небольшом расстоянии друг от друга, могут взаимодействовать между собой [1, 2, 3].
Вопросы повышения седиментационной устойчивости суспензии решаются в основном двумя путями:
- уменьшение размера частиц;
- обеспечение необходимой вязкости дисперсионной среды;
- получение мицеллярного раствора.
Размер частиц или дисперсность может выражаться либо определенной функцией их распределения, либо некоторым средним их размером. Различная диспергируемость частиц (кристаллов и агломератов) лекарственных порошков при одинаковых условиях измельчения определяется их структурой, механической прочностью и механизмом диспергирования в различных измельчителях. Одним из основных показателей, определяющих биологическое действие, является степень дисперсности суспензии (средний размер частиц и их распределение по размерам). Сформулированные в ГФ XII требования определяют размер, форму и поверхность. Одним из основных методов контроля дисперсности является приведенный в ГФ ХII изд. — микроскопический. Однако для получения количественных результатов этот метод достаточно трудоемок и дорог. Возможности и информативность методов светорассеяния обсуждались во многих работах при исследовании суспензий клеток, эритроцитов крови, эмульсий кровезаменителей, и др. Среди спектральных методов, применяемых для определения дисперсности суспензий, существуют значительно более простые по математической обработке результатов, чем используемая модификация метода спектра мутности. Однако они требуют достаточно сложного оборудования для измерения малоуглового рассеяния, в то время как измерения для метода спектра мутности могут проводиться на обычном спектрофотометре. Изучение факторов, обеспечивающих устойчивость и точность дозирования суспензий, методом скринин- га — длительный процесс.
Анализ нормативной документации, поступающих на государственный контроль, свидетельствует об отсутствии как единой методики оценки размера частиц, так и объективных критериев нормирования этих размеров. Известен метод определения точности дозирования суспензий, основанный на определении весовых отклонений отдельных доз суспензий по сухому остатку. Однако такое определение точности дозирования суспензий для детей, в которых количество лекарственного вещества (ЛВ) составляет незначительный процент от количества вспомогательных веществ, входящих в состав суспензии, неприемлемо. В тех случаях, когда в суспензиях соотношение между ЛВ и вспомогательным веществом велико, целесообразно точность дозирования определять по количественному содержанию действующих веществ в дозе на прием.
Необходимую дисперсность веществ при изготовлении суспензий в заводском производстве достигают с использованием роторно-пульсационных аппаратов и быстроходных мешалок; размолом твердой фазы в жидкой среде на коллоидных мельницах, ультразвуковым диспергированием с использованием магнитно-стрикционных и электрострикционных излучателей. Кроме метода диспергирования, суспензии изготавливают и методом конденсации, основанным на реакциях химического взаимодействия.
Как следует из данных литературы, суспензии нуждаются в улучшении своих свойств, определяющих, в том числе их стабильность. Кроме технологических приемов, эта проблема решается введением в их состав вспомогательных веществ. Роли вспомогательных веществ в технологии суспензий посвящен ряд исследований, которые проводились А.И. Тенцовой, В.Д. Козьминым, В.А. Вайнштейн, И.Ф. Белоконь, И.Р. Сурковой, Т.Ф. Рудая и др. [3, 5].
Суспензии ‒ агрегативно и кинетически не стабильные системы, требующие особого методического подхода. Для чего необходимо определить физико-химические свойства ЛВ, наиболее значимые: растворимость в горячей воде или орграстворителях, смачиваемость водой или растворами поверхност- но-активных веществ (рисунок) [6, 7, 8].
На первом этапе разработки суспензий необходимо сформировать цель исследований на основании технического задания и анализа материала. На этом основании делается вывод о виде лекарственной формы и требованиях к ним: суспензия для наружного или внутреннего применения, дозировки препарата. При этом учитывается дозировка ЛВ, физико-химические свойства ЛВ: химические свойства и возможное взаимодействие с дисперсионной средой, растворимость в воде и органических растворителях, смачиваемость водой и растворами поверхностно-активных веществ (ПАВ), гидрофильно-липофильные свойства, механическая прочность.
Соответственно определив дизайн разрабатываемой суспензии, концентрации и физико-химические свойства ЛВ, выбирается соответствующий способ уменьшения дисперсности ЛВ: вещества, не растворимые ни в чем, измельчаются с подбором оптимальных режимов и оборудования; для ЛВ, ограниченно растворимых в воде и органических растворителях, подбирается соответствующий режим конденсации или в некоторых случаях химической реакции.
Соответственно вещества, растворимые в воде или органических растворителях, вводятся в мицеллярный раствор, используя данные по ПАВ — критическую концентрацию мицеллобразования и точку Крафта. Используя минимальное количество сорастворителя или раствора ПАВ с помощью оригинальных технологических приемов получить мицеллярный раствор или ультра дисперсную суспензию. Вещества нерастворимые диспергируются, наиболее эффективное диспергирование в присутствии ПАВ. При возможности для получения суспензий, можно подобрать режимы синтеза или проведение химической модификации ЛВ, с целью получения высокодисперсной субстанции, которую затем стабилизируют.
На следующем этапе проводится отбор ПАВ с учетом назначения суспензии. Из отобранных ПАВ готовятся образцы, каждый образец исследуется на кинетическую устойчивость, термостабильность, дисперсионный анализ фракционного состава. В дальнейшем наиболее стабильные образцы оптимизируют состав на основании реологических показателей и насыщенности поверхности раздела фаз. На основании полученных показателей оптимизируются концентрация и состав ПАВ, при необходимости реологические свойства корректируются добавлением соответствующих вспомогательных веществ.
В дальнейшем проводится доработка состава до нужных потребительских свойств: добавляются консерванты, стабилизаторы перекисного окисления, а также вкусо-ароматические добавки. Оптимизируется технологическая схема производства применительно к промышленным условиям с разработкой соответствующей нормативно-технической документации. Заключительным этапом является проведение фармакологических исследований разработанной лекарственной формы.
Методологическая схема разработки суспензий
На основании проведенного исследования разработана методологическая схема исследований по созданию фармацевтических суспензий. Методологическая схема учитывает ряд этапов, предусматривающих определение физико-химических свойств лекарственных веществ, в соответствии с которыми выбирается оптимальный вариант технологии. Затем проводится выбор и оптимизация поверхностно-активных и вспомогательных веществ, оптимизация реологических параметров, химическая стабилизация и коррекция органолептических свойств.
Источник
Степень дисперсности лекарственных веществ
В зависимости от своего назначения все вспомогательные вещества можно разделить на несколько самостоятельных групп. Однако такое деление условно, ибо некоторые из этих веществ одновременно выполняют несколько функций, и соответственно, относятся к разным группам.
Вспомогательные вещества в таблетках по своему назначению делятся на наполнители (разбавители), связующие (склеивающие), разрыхляющие (дезинтегранты), антифрикционные (скользящие и смазывающие). Кроме того, применяются вещества, входящие в состав покрытия таблеток, в частности вещества из группы красителей.
В настоящее время химической промышленностью выпускается достаточно широкий ассортимент вспомогательных веществ для фармацевтического производства.
1. Наполнители (разбавители)
Наполнители применяются для обеспечения необходимой массы таблеток при малых дозировках лекарственных веществ. В случае прямого прессования смеси они могут проявлять также связующие и улучшающие скольжение свойства (микрокристаллическая целлюлоза (МКЦ). При этом МКЦ благодаря химической чистоте и низкому влагосодержанию обеспечивает получение таблеток, характеризующихся высокой химической стойкостью и стабильностью окраски [1].
Микрокристаллическая целлюлоза за рубежом выпускается под торговой маркой Avicel ® PH. В производстве таблеток используется несколько сортов микрокристаллической целлюлозы марки Avicel [3]:
- МКЦ сорта AvicelРН — 101 (с размером частиц 50 mm) наиболее широко применяется при производстве таблеток прямым прессованием или с использованием влажного гранулирования;
- МКЦ сорта AvicelPH-102 (с размером частиц 90 mm) обладает такой же степенью прессуемости, как и МКЦ сорта Avicel PH -101, но при этом благодаря меньшей дисперсности она улучшает текучие свойства порошков, что способствует более полному заполнению матрицы гранулятом в процессе таблетирования;
- МКЦ сорта AvicelPH-103 характеризуется меньшим содержанием влаги по сравнению с другими сортами МКЦ и идеально подходит для таблетирования влагочувствительных веществ;
- МКЦ сорта AvicelPH-105 имеет наименьшую степень дисперсности и применяется при таблетировании грубодисперсных, гранулированных или кристаллических веществ прямым прессованием. Её также применяют в смеси с AvicelPH-101 или AvicelPH-102 для обеспечения необходимой текучести и/или прессуемости.
2. Связующие (склеивающие) вещества
Частицы большинства лекарственных веществ имеют небольшую силу сцепления между собой, в связи с чем при их таблетировании требуется высокое давление. Последнее часто способствует износу таблеточной машины и обуславливает получение некачественных таблеток.
Для достижения необходимой силы сцепления при небольших давлениях к лекарственным субстанциям прибавляют связующие вещества, которые при заполнении межчастичных пространств увеличивают площадь контактируемых поверхностей.
Так, поливинилпирролидон (ПВП) широко используется в таблеточном производстве и приводится в USP (The United State Pharmacopoeia) и BP (British Pharmacopoeia), соответственно, как «Повидон»/»Поливидон» (растворим в воде) и «Кросповидон»/ «Сополивидон» (не растворим в воде). ПВП выпускается под разными торговыми марками а именно: Плаздоны (водорастворимые), Полиплаздоны (водонерастворимые, фирма — производитель — ISP, США) и Коллидоны (как водорастворимые, так и водонерастворимые, фирма — производитель — BASF, Германия). Преимуществами использования повидонов/поливидонов является легкая их растворимость в воде и спирте, а также их способность улучшать растворение и биодоступность лекарственных веществ (антибиотиков, анальгетиков, химиотерапевтических средств) за счет образования водорастворимых комплексов [2].
Повидоны / Поливидоны / Плаздоны могут использоваться как в сухом виде, так и в виде растворов. Существует несколько типов Плаздонов в зависимости от константы «К» — величины, характеризующей вязкость раствора:
Величина «К»
Фирмой BASF (Германия) выпускаются Коллидоны пяти типов с различной мо-лекулярной массой и разным гранулометрическим составом:
- Коллидон 12 PF («PF» — «pyrogenfreе» — «апирогенный»);
- Коллидон 17 PF;
- Коллидон 25;
- Коллидон 30;
- Коллидон 90 F («F» — от англ. «fein» — «мелкий»).
Первые два типа коллидона не используются в таблеточном производстве. В то же время Коллидон 25 с молекулярной массой 28000-34000 — идеальное связующее при использовании его в количестве 2-5 % от массы таблетки. При этом он обладает также разрыхляющими, скользящими свойствами и способствует улучшению биодоступности лекарственных веществ [3].
3. Разрыхляющие вещества (дезинтегранты)
Разрыхляющие вещества добавляют к таблеткам для улучшения их распадаемости в среде желудочно-кишечного тракта и высвобождения лекарственных веществ с оказанием необходимого терапевтического эффекта.
Полиплаздон XL (средний размер частиц 100 m) и полиплаздон XL-10 (средний размер частиц 30 m) — поперечносшитые полимеры, применяемые в количестве 0,5-5 % при получении таблеток прямым прессованием и с использованием влажного или сухого гранулирования. Полиплаздоны находят применение в основном при изготовлении таблеток с водонерастворимыми лекарственными веществами (рифампицин, рокситромицин). Полиплаздон XL используется в основном при производстве крупных таблеток с содержанием лекарственного вещества в количестве 500 мг и более, в том числе таблеток, содержащих витамины, анальгетики. Полиплаздон Xl 10 удобен при изготовлении маленьких таблеток, а также капсул [3].
Коллидон CL (от англ. «cross linкed» — «сшитый полимер»), в количестве 2-5 % от массы таблетки обладает хорошими разрыхляющими свойствами, но следует учесть, что он не растворим ни в одном из разрешенных к медицинскому применению растворителей, что определяет введение в таблетируемую массу в сухом виде [3,4].
Полиплаздон XL имеет некоторые преимущества перед Коллидоном CL. Так, например, витаминосодержащие таблетки, полученные прямым прессованием с содержанием коллидона CL в количестве 5% от массы таблетки, имеют по сравнению с таблетками, содержащими в аналогичном количестве полиплаздон XL, более низкую прочность по истечении двух месяцев ускоренного старения при температуре 37 0 С, а по истечении шести месяцев они ломаются и крошатся.
4. Вещества, входящие в состав покрытий
Из всех существующих в настоящее время видов покрытий наиболее востребованными являются пленочные покрытия, имеющие перед остальными целый ряд преимуществ. Всё большую популярность приобретают дисперсные пленочные покрытия.
В состав дисперсных покрытий обычно входят полимер, краситель и/или пигмент, скользящее вещество. В таблеточном производстве широко используется покрытие Opadry II [3,5]. В его состав входят в качестве пленкообразователя -гидроксипропилметилцеллюлоза, в качестве пластификатора — полиэтиленгликоль, придающий помимо пластифицирующего действия блеск таблетке, и триацетин, помимо пластифицирующего действия уменьшающий образование пены в процессе приготовления суспензии, пигменты — двуоксись титана, а также полисахариды: — лактоза, мальтодекстрин, полидекстроза. Преимуществами использования Opadry II перед традиционно используемыми пленкообразователями является — быстрота изготовления суспензии и легкость её нанесения, а также отсутствие в составе покрытия консервантов и отходов в виде нерастворимых осадков. Немаловажным является и сокращение времени нанесения покрытия за счет возможного увеличения концентрации суспензии, что облегчает нанесение оболочки на хрупкие и непрочные таблетки, а также на таблетки, содержащие влаго- и светочувствительные лекарственные вещества. Следует отметить также превосходное прилипание пленки к таблеткам, что находит применение в затруднительных случаях, в частности, при покрытии таблеток с гидрофобными лекарственными веществами (ибупрофен и др.). И наконец, следует отметить увеличение сроков годности таблеток с покрытием на основе Opadry II вследствие большей стабильности лекарственной формы.
Резюмируя вышеизложенное можно заключить, что расширение перечня вспомогательных веществ, применяемых при производстве таблеток, за счёт введения в их ассортимент современных наименований расширяет технологические возможности создания качественной таблетированной продукции, отвечающей всем существующим требованиям.
- Большаков В.Н. //Вспомогательные вещества в технологии лекарственных форм. — 1991. — Ленинград. — 48 с.
- Бюлер Ф. //Поливинилпирролидон для фармацевтической промышленности. 2001. — С. 20-40.
- Егошина Ю.А., Поцелуева Л.А., Галиуллина Т.Н. //Современные вспомогательные вещества в таблеточном производстве. Учебно-методическое пособие по фармацевтической технологии для иностранных студентов. — 2003. — Казань. — 15 с.
- Кульфиус Т. //Связующие агенты при влажной грануляции. — 2001. — С 10-15.
- Lehmann K. //The use of aqueosus synthetic polimer dispersions for coating pharmaceutical dosage form. 1973. — P.126-136.
Источник