Современные методы исследования лекарственных
Методология поиска новых биологически активных фармакологических веществ с рецепторной активностью
Проблема изыскания новых высокоэффективных фармакологических веществ по сей день не теряет своей актуальности. Причиной этому служит низкая эффективность или отсутствие таковой у широко известных лекарственных препаратов, применяемых для профилактики и терапии ряда патологических состояний, а также наличие побочных реакций, вызывающих дискомфортные ощущения у пациентов в период лечения.
Процесс создания лекарств требует колоссальных затрат времени и средств, не говоря о его трудоемкости. Крупные фармацевтические предприятия вкладывают миллионы, а иногда и миллиарды, долларов в исследования по разработке инновационного лекарственного препарата. В среднем, от идеи создания до внедрения препарата на рынок проходит от 5 до 15 лет. Конечный продукт является результатом объединения знаний в области медицины, химии, биологии и других наук, а также организации и создания всех условий для проведения необходимых экспериментальных исследований [1].
Согласно данным Всемирной организации здравоохранения, за последние пятьдесят лет средняя продолжительность жизни людей возросла. Не последнюю роль в этом сыграли достижения в области медицины и фармакологии. Причиной столь стремительного прогресса явилась интеграция новых технологий, в частности компьютерных, в научные исследования и разработку лекарственных препаратов, отвечающих современным фармакотерапевтическим стандартам и высоким требованиям к эффективности и безопасности [2, 5].
История фармакологии очень продолжительна и обширна. Древние люди, впервые столкнувшись с различными недугами, были вынуждены искать в окружающей среде вещества, способные в той или иной степени облегчить их состояние. Наиболее доступными оказались растительные объекты. Вещества природного происхождения не утратили свою необходимость и в настоящее время. На смену эмпирической терапии пришли синтетические препараты, что связано, в первую очередь, с бурным скачком в развитии химии во второй половине XIX в. Дальнейшее движение по пути развития привело ученых к открытию рецепторов и установлению их структуры. Данный факт является ключевым для рационального построения лекарственных средств, мощным способствующим фактором к которому послужило открытие учеными трехмерных структур белков-рецепторов и их комплексов с некоторыми лигандами.
Компьютерные технологии играют ведущую роль в конструировании лекарств, так как с их помощью можно ускорить процесс исследования, минимизировать ошибки и повысить результативность. Также активно используются достижения в области геномики и молекулярной биологии [4].
Целью настоящей статьи является обобщение и систематизация современных подходов к созданию новых лекарственных средств.
Компьютерное моделирование как метод конструирования лекарственных средств
Выбор типа моделирования зависит от имеющихся у исследователей сведений о пространственной структуре лиганда и рецептора-мишени.
Существует два основных типа моделирования: прямое и непрямое.
Прямое моделирование позволяет оценить степень сродства рецептора и лиганда. Комплементарность определенных структур активному центру рецептора можно оценить при помощи процедуры докинга. В этом случае на помощь ученым приходят специализированные базы данных, содержащие сведения об известных соединениях [3, 6].
Возможно также создание при помощи компьютерных программ гипотетической структуры молекул, которые в теории могут обладать высоким сродством к рецепторам того или иного типа. Это так называемые методы de novo. Их сущность заключается в подборе небольших фрагментов молекул с повышенной энергией связывания и минимальной энергией отталкивания в отношении активного центра рецептора. Путем постепенного присоединения фрагментов конструируется цельная молекула. Данный метод, несомненно, дает положительные результаты, однако, надежность оценки сродства не всегда высока.
Непрямое моделирование заключается в построении зависимостей «структура-активность» (QSAR) и фармакофорном моделировании. Фармакофорный анализ оценивает лиганд-рецепторное взаимодействие с позиции влияния на него функциональных групп молекул. Именно они отвечают за взаимосвязь структуры и активности.
Метод QSAR (Quantitative Structure – Activity Relationship) довольно успешно применяется уже на протяжении нескольких десятилетий. Он позволяет предсказать различные свойства соединений, исходя из их химической структуры. Для построения моделей в данном методе широко применяется математическая статистика [7].
Оптимизация процесса создания лекарственных средств
В процессе разработки лекарственных средств выделяют две основные стадии – доклинические и клинические исследования. Как важнейшая составляющая, стадия доклинических испытаний включает в себя следующие этапы:
– выявление мишени для лекарственного средства;
– оптимизацию соединения лидера;
– доклиническую оценку фармакологических свойств.
Выбор мишени осуществляется на основании имеющихся данных о конкретном заболевании. В настоящее время преимущество отдается геномике и протеомике, позволяющим точно выявить мишени в организме, отвечающие за патологический процесс. Множество фармацевтических компаний уже пользуются достижениями геномики. Помимо секвенирования генома, ведущего к открытию новых мишеней, используется позиционное клонирование и другие современные методики. Следует отметить, что при наличии достаточного количества процедур по выявлению мишеней, выбор действительно верных из них, становится все сложнее. Для этого производят процедуру валидации (target validation) [8, 9].
Нельзя также не отметить перспективы применения хемоинформатики. Эта область науки, находящаяся на пересечении химии и информатики, позволяет прогнозировать физико-химические свойства соединений, токсическую и биологическую активность и разрабатывать новые лекарственные препараты [10].
Соединением-лидером считается вещество, обладающее сродством к определенному рецептору и проявляющее фармакологическую активность. Для поиска таких соединений используются обширные базы данных, содержащие информацию о зависимости фармакологического эффекта от особенностей химической и пространственной структуры исследуемых субстанций. Наиболее часто используемыми и эффективными считаются электронные библиотеки на основе de novo дизайна.
Все базовые соединения подвергаются тестированию на наличие определенного типа активности. Данный процесс достаточно длительный и трудоемкий. Эффективность тотального скрининга невелика, несмотря на его возможность анализировать большое количество соединений с высокой надежностью. В настоящее время ученые все чаще обращаются к инновационным методикам, среди которых следует особо выделить скрининг на основе ЯМР, фармакофорный анализ и виртуальный скрининг [11].
Магниторезонансные методики, являясь высокочувствительными, дают возможность анализировать сложные смеси веществ и получать данные о связи лигандов с рецепторами даже при отсутствии начальной информации [12].
Развитие компьютерных технологий позволяет более эффективно вести поиск соединений-лидеров в специализированных базах данных. Это во многом связано с сочетанием фармакофорного анализа и методов QSAR, позволяющих выявить требования, которым должны соответствовать искомые соединения [13].
Виртуальный скрининг как метод поиска соединений-лидеров объединяет в себе различные компьютерные технологии. Он особенно информативен в тех случаях, когда имеются сведения о химической структуре веществ в различных вариациях [14].
Таким образом, в арсенале ученых-исследователей имеется достаточное количество методов, охватывающих широкий круг проблем – от создания и совершенствования баз данных до анализа молекулярного подобия и построения моделей QSAR. Для анализа молекулярного подобия используются трехмерные дескрипторы молекулярной структуры. Актуальной на сегодняшний день является проблема поиска дескрипторов и обозначение границ их применимости.
После нахождения соединения-лидера проводится его оптимизация с целью усиления активности и избирательности действия, а также минимизации нежелательных побочных эффектов. Компьютерное моделирование помогает исключить заведомо бесперспективные соединения, что существенно ускоряет процесс оптимизации.
Важную роль в выборе метода оптимизации играет наличие сведений о пространственной структуре рецептора. Наличие такого типа информации дает возможность использования дизайна de novo. Дизайн лигандов, корректировка структуры комплекса вещество-рецептор приводят в дальнейшем к получению новых соединений-лидеров с заданными свойствами. Такие методики широко используются для создания лекарственных средств различных фармакологических групп, в том числе и препаратов терапии ВИЧ-инфекции [15].
При отсутствии сведений о пространственной структуре рецептора применяют метод QSAR, позволяющий установить зависимость между дескрипторами ряда близких по строению биологически активных соединений и их фармакологической активностью. Построение такого рода зависимостей помогает выявить и проанализировать факторы, обусловливающие возникновение того или иного эффекта в организме и дает возможность прогнозирования свойств новых соединений на основе общности химической структуры [16].
Помимо QSAR исследователи активно используют метод CoMFA (Comparative Molecular Field Analysis), позволяющий подобрать лиганд с определенным расположением радикалов, а также доноров или акцепторов водородной связи. Позже возникли такие методы как: CoMMA (Comparative Molecular Moment Analysis); WHIM (Weighted Holistic Invariant Molecular descriptors) [17].
Развитие компьютерных технологий, несомненно, внесло колоссальный вклад в создание инновационных лекарственных препаратов, однако, компьютерное моделирование не всегда гарантирует создание лекарственного средства.
Необходимо проведение доклинической оценки фармакологических свойств.
Наличие у вещества рецепторной активности далеко не во всех случаях приводит к его дальнейшему использованию в качестве лекарственного средства. Многие из веществ-кандидатов, успешно прошедших доклинические исследования, отсеиваются на этапе дорогостоящих клинических испытаний. Для минимизации затрат и сокращения сроков исследования необходимо научиться моделировать различные фармакокинетические и токсикологические свойства соединений. Моделирование свойств ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) позволяет из всего многообразия выделить только те вещества, которые обладают необходимыми фармакологическими характеристиками [18].
Серьезным этапом является перенос результатов исследований на человека. Существует ряд in silico методов оценки таких важнейших ADMET-свойств как биодоступность, степень связывания с белками плазмы крови, способность прохождения через барьеры и др. [19].
Сложность моделирования ADMET-свойств заключается в наличии множества взаимосвязанных физиологических процессов, протекающих в организме человека, и небольшом запасе экспериментальных данных. Однако, путем расширения научных знаний и перехода к построению моделей для предсказания тех или иных параметров возможно ускорение и улучшение процесса разработки лекарственных средств [20].
Подводя итог, следует отметить, что в настоящее время традиционный эмпирический синтез лекарственных средств отходит на второй план, уступая место инновационным технологиям. Широкое применение компьютерного моделирования, а также достижений в области геномики, протеомики, молекулярной биологии, фармакологии и медицины обусловливают переход науки на качественно новый уровень, что проявляется в возможности направленного синтеза лекарственных средств с заданными фармакокинетическими и фармакодинамическими показателями. Дальнейшее движение науки по пути прогресса позволит миниминизировать in vivo исследования и клинические испытания, сделав разработку лекарств более рациональной и эффективной.
Источник
Современные методы изучения лекарственных веществ: клинические, физиологические, биохимические и др.
Широкое внедрение принципов медицины, основанной на доказательствах, в клиническую практику во многом обусловлено экономическим аспектом. От того, насколько убедительны научные данные о клинической и экономической эффективности методов диагностики, лечения и профилактики, зависит правильность распределения финансовых средств. В клинической практике конкретные решения следует принимать не столько на основании личного опыта или мнения экспертов, сколько исходя из строго доказанных научных данных. Следует обратить внимание не только на бесполезность, но и на отсутствие научно-обоснованных доказательств пользы применения различных методов лечения и профилактики. В настоящее время это положение приобретает особую актуальность, так как клинические исследования финансируются преимущественно производителями медицинских товаров и услуг.
Понятие «evidence-based medicine», или «медицина, основанная на доказательствах», было предложено канадскими учеными из университета Мак Мастера в Торонто в 1990 году. Доказательная медицина- это не новая наука, а скорее новый подход, направление или технология сбора, анализа, обобщения и интерпретации научной информации. Необходимость в медицине, основанной на доказательствах, возникла, прежде всего, в связи с увеличением объема научной информации, в частности в области клинической фармакологии. Ежегодно в клиническую практику внедряются все новые и новые лекарственные средства. Они активно изучаются в многочисленных клинических исследованиях, результаты которых нередко оказываются неоднозначными , а иногда и прямо противоположными. Чтобы использовать полученную информацию, ее необходимо не только тщательно проанализировать, но и обобщить.
Для рационального применения новых лекарственных средств, достижения их максимального терапевтического действия и предупреждения их нежелательных реакций необходимо уже на стадии испытаний получить всестороннюю характеристику препарата, данные обо всех его лечебных и возможных отрицательных свойствах. Одним из основных путей получения новых лекарственных средств является скрининг биологически активных веществ. Следует отметить, что такой путь поиска и создания новых препаратов очень трудоемок — в среднем один заслуживающий внимания препарат приходится на 5-10 тысяч исследованных соединений. Путем скрининга и случайных наблюдений в свое время были найдены ценные препараты, вошедшие в медицинскую практику. Однако случайность не может быть основным принципом отбора новых лекарственных средств. По мере развития науки стало совершенно очевидным, что создание лекарственных препаратов должно базироваться на выявлении биологически активных веществ, участвующих в процессах жизнедеятельности, изучении патофизиологических и патохимических процессов, лежащих в основе развития различных заболеваний, а также углубленном исследовании механизмов фармакологического действия. Достижения медико-биологических наук позволяют все шире проводить направленный синтез веществ с улучшенными свойствами и определенной фармакологической активностью.
Доклиническое изучение биологической активности веществ принято разделять на фармакологическое и токсикологическое. Такое разделение условно, поскольку указанные исследования взаимозависимы и строятся на одних и тех же принципах. Результаты изучения острой токсичности лекарственных соединений дают информацию для последующих фармакологических исследований, которые, в свою очередь, определяют интенсивность и продолжительность изучения хронической токсичности вещества.
Цель фармакологических исследований – определение терапевтической активности препарата, а также его влияния на основные анатомические и физиологические системы организма. В процессе изучения фармакодинамики вещества устанавливают не только его специфическую активность, но и возможные побочные реакции, связанные с фармакологическим эффектом. Действие исследуемого препарата на больной и здоровый организмы может различаться, поэтому фармакологические испытания должны проводиться на моделях соответствующих заболеваний или патологических состояний.
При токсикологических исследованиях устанавливают характер и выраженность возможного повреждающего действия препаратов на экспериментальных животных. В токсикологических исследованиях выделяют три этапа:
изучение острой токсичности вещества при однократном введении;
определение хронической токсичности соединения, которое включает в себя повторное применение препарата на протяжении 1 года, а иногда и более;
установление специфической токсичности препарата – онкогенности, мутагенности, эмбриотоксичности, включая тератогенное действие, сенсибилизирующих свойств, а также способности вызывать лекарственную зависимость.
Изучение повреждающего действия исследуемого препарата на организм экспериментальных животных позволяет определить, какие органы и ткани наиболее чувствительны к данному веществу и на что следует обратить особое внимание при клинических исследованиях.
Цель клинических исследований — оценка терапевтической или профилактической эффективности и переносимости нового фармакологического средства, установление наиболее рациональных доз и схем его применения, а также сравнительная характеристика с уже существующими лекарственными средствами. При оценке результатов клинических исследований следует учитывать следующие их характеристики: наличие контрольной группы, ясные критерии включения и исключения пациентов, включение пациентов в исследования до выбора лечения, случайный (слепой) выбор лечения, адекватный метод рандомизации, слепой контроль, слепая оценка результатов лечения, информация об осложнениях и побочных эффектах, информация о качестве жизни пациентов, информация о числе больных выбывших из исследования, адекватный статистический анализ с указанием названий использованных текстов и программ, статистическая сила, информация о размере выявленного эффекта.
Программы клинических исследований разных групп препаратов могут значительно различаться. Однако некоторые значительные положения должны быть всегда отражены. Четко следует сформулировать цели и задачи испытания; определить критерии отбора больных; указать метод распределения больных на основную и контрольную группы и число больных в каждой группе; метод установления эффективных доз препарата, длительность исследования; метод контроля (открытый, слепой, двойной и др.), препарат сравнения и плацебо, методы количественного анализа действия исследуемых препаратов (подлежащие регистрации показатели); методы статической обработки данных.
При оценке публикаций, посвященных методам лечения, следует помнить, что критерии исключения больных из исследования указываются достаточно часто, а критерии включения – реже. Если не ясно, на каких пациентах изучался препарат, то трудно оценить информативность полученных данных. Большая часть исследований проводиться в специализированных университетских больницах или научных центрах, где больные, конечно же, отличаются от больных в районных поликлиниках. Поэтому после первичных испытаний проводят все новые и новые исследования. Сначала – многоцентровые, когда благодаря привлечению разных больниц и амбулаторной особенности каждой из них сглаживаются. Затем – открытые. С каждым этапом уверенность в том, что результаты исследований будут применимы для любого стационара, увеличиваются.
Весьма важным и сложным является вопрос об установлении дозы и режима применения исследуемого препарата. Существуют только самые общие рекомендации, в основном сводящиеся к тому, что следует начинать с низкой дозы, которую постепенно увеличивают, пока не будет получен желаемый или побочный эффект. При разработке рациональных доз и схем применения исследуемого препарата, желательно установить широту его терапевтического действия, диапазон между минимальной и максимальной безопасной терапевтическими дозами. Длительность применения исследуемого препарата не должна превышать длительность токсикологических испытаний на животных.
В процессе клинических исследований новых лекарственных средств выделяют 4 взаимосвязанные фазы (этапы).
Фазу первых клинических испытаний называют “пристрелочной”, или “клинико-фармакологической”. Цель ее — установить переносимость исследуемого препарата и наличие у него терапевтического действия.
В фазу II клинические исследования проводят на 100-200 больных. Необходимое условие – наличие контрольной группы, существенно не отличающейся по составу и численности от основной группы. Больные опытной группы (основной) и контрольной , должны быть одинаковыми по полу, возрасту, исходному фоновому лечению (его желательно прекратить за 2-4 недели до начала исследования). Группы формируются случайным образом путем использования таблиц случайных чисел, в которых каждая цифра или каждая комбинация цифр имеет равную вероятность отбора. Рандомизация, или случайное распределение, — основной способ обеспечения сопоставимости групп сравнения.
В клинических исследованиях новые препараты стараются сравнивать с плацебо, что позволяет оценить реальную эффективность терапии, например, ее влияние на продолжительность жизни больных по сравнению с отсутствием лечения. Необходимость двойного слепого метода определяется тем, что если врачи знают, какое лечение получает больной (активный препарат или плацебо), то они могут непроизвольно выдать желаемое за действительное.
Необходимым условием проведения адекватных клинических исследований является рандомизация. Из рассмотрения нужно сразу исключать статьи об исследованиях, в которых распределение пациентов на группы сравнения было не неслучайным, или метод распределения был неудовлетворительным (например, делили пациентов по дням недели поступления в стационар) или вообще отсутствует информация о нем. Еще менее информативными являются исследования с историческим контролем (когда для сравнения используются полученные ранее данные или результаты исследований, проводившихся в других лечебных учреждениях). В международной литературе о рандомизации сообщается в 9/10 статей, посвященным проблемам фармакотерапии, но только в 1/3 статей уточняется метод рандомизации. Если качество рандомизации вызывает сомнение, то опытная и контрольная группы, вероятнее всего, не сравнимы, и необходимо искать другие источники информации.
Большое значение имеет клиническая значимость и статистическая достоверность результатов лечения. Результаты клинического испытания или популяционного исследования представляются в виде сведений о частоте исходов и статистической достоверности различий между группами пациентов. Не представляет ли автор статистически достоверные, но малые различия как клинически значимые? Статистически значимо то, что действительно существует с высокой вероятностью. Клинически значимо то, что своими размерами (например, величиной снижения смертности) убеждает врача в необходимости изменить свою практику в пользу нового метода лечения.
Методы, критерии оценки эффективности препарата, время измерения соответствующих показателей должны быть согласованы перед началом испытания. Критерии оценки бывают клиническими, лабораторными, морфологическими и инструментальными. Нередко об эффективности исследуемого препарата судят по уменьшению дозы других лекарственных средств. Для каждой группы препаратов существуют обязательные и дополнительные (факультативные) критерии.
Целью фазы III клинических испытаний является получение дополнительных сведений об эффективности и побочном действии фармакологического средства, уточняются особенности действия препарата и определяются относительно редко встречающиеся нежелательные реакции. Изучаются особенности препарата у больных с нарушением кровообращения, функции почек и печени, оценивается взаимодействие с другими средствами. Результаты лечения заносятся в индивидуальные регистрационные карты. В конце исследования полученные результаты суммируются, обрабатываются статистически и оформляются в виде отчета. Соответствующие показатели, полученные за один и тот же период времени в основной и контрольной группах, сопоставляются статически. Для каждого показателя вычисляется средняя разность за изучаемый промежуток времени (по сравнению с исходным уровнем до лечения) и оценивается достоверность отмечено динамики внутри каждой группы. Затем сравниваются средние разности величин конкретных показателей контрольной и опытной групп, для оценки различия в действии исследуемого средства и плацебо или препарата сравнения. Отчет о результатах клинических испытаний нового лекарственного средства оформляется в соответствии с требованиями Фармакологического комитета и представляется в комитет с конкретными рекомендациями. Рекомендация к клиническому применению считается обоснованной, если новый препарат:
Более эффективен, чем известные препараты аналогичного действия;
Обладает лучшей переносимостью, чем известные препараты ( при одинаковой переносимости);
Эффективен в тех случаях, когда лечение известными препаратами безуспешно;
Более выгоден экономически, имеет простую методику лечения или более удобную лекарственную форму;
При комбинированной терапии повышает эффективность уже существующих лекарственных средств, не увеличивая их токсичности.
После разрешения применения нового препарата в ветеринарной практике и его внедрения начинается фаза IV исследований – действие лекарственного средства изучается в разнообразных ситуациях на практике.
Источник