- Масса дуги. Прошу найти ошибку в моем решении
- Типовик матан 5 модуль
- С помощью криволинейного интеграла первого рода найдите массу m дуги плоской материальной кривой
- Механические приложения криволинейного интеграла 1-го рода
- Механические приложения криволинейного интеграла 1-го рода
- Далее:
- Формула Грина. Площадь плоской области. Масса кривой
Масса дуги. Прошу найти ошибку в моем решении
Прошу найти ошибку в моем решении:
найти массу дуги =1
делаю замену X=x+9,Y=y-1, получаю:
Новая Плотность равнается -XY.
Помощь в написании контрольных, курсовых и дипломных работ здесь.
Масса дуги кривой (приложения криволинейных интегралов 1 рода)
Нужна помощь с решением задачи. Вычислить массу дуги кривой ln x, заключенной между точками с.
Ряды — найти ошибку в решении
Ребят, добрый день! Помогите пожалуйста исправить ошибки! Не могу разобраться.
Не могу найти ошибку в решении
Интеграл по области 8ydx+xdy по области x=
Найти ошибку в решении рекуррентного уравнения
Необходимо решить следующее рекуррентное уравнение: Хn+2+4Xn+1+4Xn=n*2n+3 Начальные условия: .
прошу простить за отсутствие плотности
не могли бы написать ответ,чтобы знать,какой правильный
Условия,которые мне дали изначально: + плотность дугиайти массу кривой .
Не могли бы сказать,какие пределы интегрирования должны быть и какой ответ должен получиться
Я нашел у себя ошибку в предыдущем посте, сейчас я постараюсь указать правильно все условия и предоставить свое решение, надеюсь,вы сможете проверить на наличие ошибки.
Найти массу дуги кривой :
тогда получаем:
(минус ставим ,так как дуга находится в четвертой четверти)
так как инегрируем по четвертой области эллипса,
масса равна:
Хотелось бы спросить, если тут ошибки и как бы изменился порядок интегрирования,если мы работали в 3 четверти эллипса?
Источник
Типовик матан 5 модуль
Решение. 1) Преобразуем уравнение (7):
x 2 + y 2 + z 2 = 6 z x 2 + y 2 + z 2 − 6 z = 0
x 2 + y 2 + z 2 − 6 z + 9 = 9 x 2 + y 2 + ( z − 3) 2 = 3 2 .
Таким образом, уравнение (7) задает сферу с радиусом, равным 3 и центром в точке K (0; 0; 3). Уравнение (8) задает конус с вершиной в точке O (0; 0; 0). Уравнение (9) задает координатную плоскость Oxz . Условие y ≥ 0 выделяет ту часть тела, которая лежит
в области положительных ординат. Принадлежность телу точки M (0; 1; 3) указывает на то, что тело содержит точки, лежащие внутри конуса и сферы.
Тело Т изображено схематически на рис. 5.
К 3 M .
2) Объем V тела Т выражается тройным интегралом V = ∫∫∫ dv .
Будем вычислять этот интеграл, перейдя к сферическим координатам. Для этого используем формулы перехода от декартовых координат к сферическим:
x = r sin θ cos ϕ , y = r sin θ sin ϕ , z = r cos θ .
выполняется условие x 2 + y 2 = z 2 = r 2 . Якобиан перехода равен r 2 sin θ . Формула объема тела примет вид: V = ∫∫∫ r 2 sin θ dr d ϕ d θ .
Перейдем в уравнениях сферы и конуса от декартовых координат к сферическим.
Преобразуем уравнение сферы:
x 2 + y 2 + z 2 = 6 z r 2 = 6 r cos θ r = 6 cos θ .
Преобразуем уравнение конуса при z ≥ 0 :
x 2 + y 2 = z 2 r 2 sin 2 θ = r 2 cos 2 θ tg 2 θ = 1 tg θ = 1 θ = π 4 .
Координатная плоскость y = 0 при y ≥ 0 «отрезает» от тела,
ограниченного сферой и конусом, ту часть, для точек которой выполняются неравенства
Таким образом, для всех точек данного тела справедливы следующие условия:
0 ≤ r ≤ 6cos θ , 0 ≤ θ ≤
С помощью полученных неравенств расставим пределы интегрирования в тройном интеграле, выражающем объем V тела Т :
V = ∫ d ϕ ∫ sin θ d θ
Будем последовательно находить определенные интегралы, начиная с интеграла по переменной r :
Источник
С помощью криволинейного интеграла первого рода найдите массу m дуги плоской материальной кривой
ЗАДАНИЕ 10. Найти массу тела , ограниченного поверхностями: ; ; ; ; плотность массы тела .
Область ограничена с боков координатными плоскостями и цилиндрической поверхностью . Снизу она “накрыта” плоскостью , сверху поверхностью параболоида (рис.79).
Область является -цилиндрическим брусом. Масса тела может быть вычислена по формуле:
Цилиндрический брус проектируется на плоскость в криволинейную трапецию (D): 0 x 1, 0 y . Преобразуем тройной интеграл в повторный и вычислим его:
Замечание. В цилиндрической системе координат вычисления упрощаются:
Ответ. Масса заданного тела равна 1.
ЗАДАНИЕ 11. Вычислить криволинейный интеграл
по формуле Грина; замкнутый контур ( ) складывается из двух кривых: и (см. рис. 80).
Преобразуем криволинейный интеграл по замкнутому контуру в двойной по формуле Грина
Для заданного по условию интеграла получим .
Вычислим двойной интеграл в декартовой системе координат. Имеем:
Замечание. Двойной интеграл может быть вычислен и в полярной системе координат:
ЗАДАНИЕ 12. Вычислить массу дуги кривой ( ) при заданной плотности :
1) Рассматривается случай параметрического задания кривой ( ). Массу плоской кривой можно вычислить с помощью криволинейного интеграла первого рода: . Для вычисления его нужно свести к определенному интегралу от функции одной переменной по отрезку по формуле:
, так как для функция . Вычислим массу с помощью определенного интеграла:
2) Кривая ( ) задана явным выражением. В случае явного задания кривой криволинейный интеграл первого рода сводится к определенному следующим образом :
Для массы получим:
3) Наконец, рассмотрим случай кривой, заданной в полярной системе координат, в этом случае масса может быть определена по формуле
Для определения массы кривой получим определенный интеграл
Источник
Механические приложения криволинейного интеграла 1-го рода
Механические приложения криволинейного интеграла 1-го рода
- Услуги проектирования
- Криволинейный интеграл
- Механические приложения криволинейного интеграла 1-го рода
Механические приложения криволинейного интеграла 1-го рода
$\mathbf < \textit < m >> $ материальной кривой $\mathop < AB >\limits^\cup $ с плотностью $\mu (\mathbf < \textit < x >> $,$\mathbf < \textit < y >> $,$\mathbf < \textit < z >> )$ вычисляется по формуле $m=\int\limits_ < \mathop < AB >\limits^\cup > < \mu (x,y,z)d\ell >$.
Найти массу четверти лемнискаты $r^2=a^2\cos 2\varphi $, если плотность выражается формулой $\mu (\mathbf < \textit < x >> $,$\mathbf < \textit < y >> )=k\sqrt < x^2+y^2 >=kr$.
Решение:
Статические моменты и координаты центра масс
Пусть плоская материальная кривая $\mathop < AB >\limits^\cup $ имеет плотность $\mu (\mathbf < \textit < x >> $,$\mathbf < \textit < y >> )$.
Статический момент относительно оси $\mathbf < \textit < Ox >> $ определяется по формуле $M_x =\int\limits_ < \mathop < AB >\limits^\cup > < y\mu (x,y)d\ell >$, относительно оси Oy: $M_y =\int\limits_ < \mathop < AB >\limits^\cup > < x\mu (x,y)d\ell >$.
Аналогично, статические моменты пространственной кривой относительно координатных плоскостей вычисляются по формулам $ M_ < xy >=\int\limits_ < \mathop < AB >\limits^\cup > < z\mu d\ell >, \quad M_ < xz >=\int\limits_ < \mathop < AB >\limits^\cup > < y\mu d\ell >, \quad M_ < yz >=\int\limits_ < \mathop < AB >\limits^\cup > < x\mu d\ell >$
Координаты центра масс могут быть найдены по формулам
$x_c =\frac < M_ < y >> < m >,\quad \;y_c =\frac < M_ < x >> < m >\quad $ — для плоской кривой;
$x_c =\frac < M_ < yz >> < m >,\quad \;y_c =\frac < M_ < xz >> < m >,\quad \;z_c =\frac < M_ < xy >> < m >\quad -$ для пространственной кривой, где $\mathbf < \textit < m >> $ — масса кривой.
Найти центр масс четверти однородной окружности $x^2+y^2=a^2,x\geqslant 0,y\geqslant 0$
Решение:
Можно считать, что $\mu =1$. Тогда масса кривой равна ее длине $m=\frac < 2\pi a > < 4 >=\frac < \pi a > < 2 >$. Статический момент $M_x $ равен $ M_x =\int\limits_ < \mathop < AB >\limits^\cup > < yd\ell >=\int\limits_0^a < \sqrt < a^2-x^2 >\cdot \sqrt < 1+\frac < x^2 > < a^2-x^2 >> dx > =a^2. $ Из соображений симметрии $M_y =M_x $, поэтому координаты центра масс равны $ x_c =\frac < M_y > < m >=\frac < 2a > < \pi >,\quad \;y_c =\frac < M_x > < m >=\frac < 2a > < \pi >. $
Моменты инерции плоской кривой $\mathop < AB >\limits^\cup $с плотностью $\mu $ относительно координатных осей вычисляются по формулам $ I_ < Ox >=\int\limits_ < \mathop < AB >\limits^\cup > < y^2\mu d\ell >, \quad I_ < Oy >=\int\limits_ < \mathop < AB >\limits^\cup > < x^2\mu d\ell >; $ моменты инерции относительно начала координат $ I_0 =\int\limits_ < \mathop < AB >\limits^\cup > < (x^2+y^2)\mu d\ell >=I_x +I_y $ В случае пространственной кривой моменты инерции относительно координатных осей и начала координат определяются по формулам $ I_ < Ox >=\int\limits_ < \mathop < AB >\limits^\cup > < (y^2+z^2)\mu d\ell >, \quad I_ < Oy >=\int\limits_ < \mathop < AB >\limits^\cup > < (x^2+z^2)\mu d\ell >, \quad I_ < Oz >=\int\limits_ < \mathop < AB >\limits^\cup > < (x^2+y^2)\mu d\ell >, \quad I_0 =\int\limits_ < \mathop < AB >\limits^\cup > < (x^2+y^2+z^2)\mu d\ell =\frac < I_ < Ox >+I_ < Oy >+I_ < Oz >> < 2 >> . $
Найти момент инерции относительно оси $\mathbf < \textit < Oz >> $ однородной винтовой линии $\mu =1\mathbf < \textit < x >> =\mathbf < \textit < a >> cos \mathbf < \textit < t >> , \mathbf < \textit < y >> =\mathbf < \textit < a >> sin \mathbf < \textit < t >> , \mathbf < \textit < z >> =\mathbf < \textit < at >> ; 0 \leqslant \mathbf < \textit < t >> \leqslant 2\pi $
Решение:
Далее:
Механические приложения тройного интеграла
Векторное поле
Вычисление объёмов
Инвариантное определение дивергенции
Определение двойного интеграла
Выражение площади плоской области через криволинейный интеграл
Вычисление двойного интеграла. Двукратный интеграл
Теорема о заведомо полныx системаx
Вычисление тройного интеграла. Теорема о переходе от тройного интеграла к повторному
Гармонические поля
Свойства криволинейного интеграла второго рода
Вычисление поверхностного интеграла первого рода
Класс M. Теорема о замкнутости класса M
Определение криволинейного интеграла второго рода
Огравление $\Rightarrow $
Источник
Формула Грина. Площадь плоской области. Масса кривой
По этой ссылке вы найдёте полный курс лекций по математике:
Выведем формулу Грина, связывающую криволинейный интеграл по границе L некоторой плоской области D с двойным интегралом по этой области. Теорема 3. Если в замкнутой области D, ограниченной кусочно-гладким контуром L, функции Р(х, у) и Q(x, у) непрерывны и имеют непрерывные частные производные ^ и то справедливо равенство <формула Грина): есь символ § означает интегрирование по границе L области D, причем граница L проходится так, что область D остается слева (рис. 7).
Граница L плоской области D может состоять из одной или нескольких простых замкнутых кривых (компонент). В первом случае она называется односвязной, а во втором — многосвязной. Если граница L состоит из конечного числа кусочно-гладких замкнутых кривых L,-, то кривые Li называются связными компонентами границы. На рис. 8 изображена трехсвязная область.
Односвязная область D (область «без дырок») обладаеттем свойством, чтолюбая лежащая в ней замкнутая кривая может быть стянута в точку Р G D, оставаясь в процессе стягивания в области D. Доказательство теоремы проведем для односвязной области. М В силу свойства линейности достаточно доказать, что Формула Грина Площадь плоской области Масса кривой Площадь цилиндрической поверхности Площадь плоской фигуры Обобщение случай пространственной кривой Докажем первую из этих формул.
Предположим сначала, что кривая L пересекается каждой прямой, параллельной оси Оу, не более чем в двух точках или по целому отрезку (рис. 9). Если каждая такая прямая пересекает кривую L не более чем в двух точках, то кривую L можно разбить на две части L\ и Ь2 (верхнюю и нижнюю), каждая из которых проектируется взаимно однозначно на некоторый отрезок [а, Ь\ оси Ох.
Всилуаддитивности криволинейного интеграла имеем На каждой из кривых L\ и Li возьмем в качестве параметра абсциссу х и запишем уравнения этих кривых сояветстве нно в виде Тогда По предположению производная непрерывна в D, и значит, в силу известной формулы интегрального исчисления, приращение функции можно записать через интеграл от производной этой функции: Из формул получаем Повторный интеграл в правой части последнего соотношения равен двойному инте-фалу от функции ^ по области D, так что окончательно имеем Формула (2) доказана.
Соотношение (3) доказывается аналогично. Складывая почленно соотношения (2) и (3), получаем формулу Грина (1). Отметим, что формула Грина имеет место и для более сложных контуров L, и для неодносвязных областей D. Рассмотрим, например, случай двухсвязной области (рис. 10). Сделаем разрез А В этой области, превращающий ее в односвязную. Тогда Отсюда, учитывая, что получим где интегрирование по кривой L\ ведется в направлении против движения часовой стрелки, а по кривой Ь2 — в направлении движения часовой стрелки.
Отметим, что при этом кривые L\ и Ь2 проходятся так, что область D остается слева. Такое направление обхода контура принимается за положительное. Площадь плоской области Возьмем Тогда по формуле Грина (1) получаем где 5 — площадь области D. Отсюда получаем формулу для вычисления площади 5 плоской области D с помощью криволинейного интеграла по границе L этой области: (7) Прммр. Вычислить площадь области, ограниченной эллипсом L: Запишем уравнение эллипса в параметрической форме .
Искомая площадь находится по формуле (7), где криволинейный интеграл берется по эллипсу при обходе контура в положительном направлении, что соответствует изменен ик> параметра t от 0 до 2я. Так как то отсюда получаем, что Замечание. Пусть в пространстве задана ориентированная кусочно-гладкая кривая AD и пусть, кроме того, в некоторой области П, содержащей кривую AD, задана вектор-функция — непрерывные в О функции.
Аналогично плоскому случаю криволинейный интеграл от вектор-функции F по ориентированной кривой АВ определим выражением Масса кривой В примере 1 из § 1 было показано, что масса кривой L вычисляется с помощью интеграла 1-го рода где /(М) — переменная линейная плотность на кривой L. (Мы предполагаем, что f(M) — непрерывная фунмция на АВ.) 4.2. Площадь цилиндрической поверхности Пусть в плоскости хОу задана некоторая спрямляемая (т. е. имеющая длину) кривая АВ и на этой кривой определена непрерывная функция f(M) ^ 0.
Тогда совокупность точек (х, у, f(x, у)), или (М, /(М)), составит некоторую кривую, лежащую на цилиндрической поверхности, для которой кривая АВ является направляющей, а ее образующая параллельна оси Oz.
Требуется определить площадь цилиндрической поверхности ABDC, о»раниченной снизу кривой АВУ сверху — кривой z — f(M), где М € АВ, и вертикальными прямыми АС и BD (рис. 11). Для решения этой задачи поступим так: 1) разобьем кривую АВ на п частей точками так, как показано на рис. 11; 2) из каждой точки Мк проведем перпендикуляр к плоскости хОу высотой f(Mk) (при этом цилиндрическая поверхность А В DC разобьется на п полосок);
3) кажаую полоску заменим прямоугольником с основанием — длина дуги МкМк+\, и высотой, равной значению функции /(М) в какой-нибудь точке этой дуги, например, в точке Мк. Тогда площадь fc-ой полоски будет приближенно равна. а площадь всей поверхности ABDC Это приближенное равенство будет тем точнее, чем мельче будут частичные дуги , на которые разбита кривая АВ. Пусть Д/ — наибольшая из длин А1к частичных .цт .
Возможно вам будут полезны данные страницы:
Тогда при 0 в пределе получим точное значение искомой площади Предел справа по определению есть криволинейный интеграл первого рода от функции /(Af) по кривой АВ. Итак, (2) Пример 1. Вычислить площадь части боковой поверхности цилиндра срезанного сверху поверхностью Сведем задачу к вычислению криволинейного интеграла t-ro рода от функции вдоль дуги окружности, расположенной в первой четверти. Будем иметь Параметрические уравнения линии Формула Грина Площадь плоской области Масса кривой.
Площадь цилиндрической поверхности Площадь плоской фигуры Обобщение случай пространственной кривой Площадь плоской фигуры Ранее мы установили, что площадь 5 плоской фигуры D, ограниченной линией L, вычисляется по формуле Правая часть есть криволинейный интеграл 2-го рода. 4.4. Работа силы Пусть в некоторой плоской области D, содержащей кривую АВУ задана сила где функции , а следовательно, и F(М) предполагаются непрерывными функциями точки ЛГ.
Требуется найти работу силы F, если под действием этой силы материальная точка М, имеющая единичную массу, переместилась из точки А в точку В по кривой АВ. Для решения этой задачи разделим кривую АВ на п частей точками (рис. 12), заменим каждую дугу хордой , предполагая для простоты , что на участке \ кривой (а значит, и на хорде сила Ffc имеет постоянное значение, например, равное ее значению в точке получим приближенное выражение работы силы на участке пути где — длина вектора — длина вектора.
Из формулы (4) с учетом (5) получим или Так как правая частьформулы (6) есть скалярное произведение векторов то, учитывая (7) и (8), будем иметь Суммируя по всем значениям , получим величину принимают за точное значение работы. Но с другой стороны, предел этой суммы есть криволинейный интеграл 2-го рода от вектор-функции F(M) по кривой АВ.
Итак, работа силы вычисляется по формуле Рис. 12 ( Пример 2. Найти работу силы при перемещении единичной массы по параболе 4 Применим формулу (9), положив в ней Так как то искомую работу можо вычислить так: Обобщение на случай пространственной кривой (рис. 14). Если в некоторой пространственной области П, содержащей пространственную кривую АВ, задана сила — непрерывные функции в области П, то рабога, совершаемая силой F(M) по перемещению материальной точки М с единичной массой из точки А в точку В по пространственной кривой АВ, равна Упражнения.
Вычислите криволинейные интегралы 1-го рода: 1. — четверть элл ипса ^ + = 1, л ежащая в первом квадранте. — окружность — отрезок прямой, соединяющий точки отреэо к прямой, соединяющий точки (— дуга параболы у2 = 2х от точки (0,0) до точки (I, первый виток винтовой линии Найдите длину дуги конической винтовой линии х — ас* cost, у = от точки .до точки 2?(а,0,а). Указание: точке А соответствует- значение параметра t( = -оо, а точке В — значение t2 = 0. 8. Найдите площадь боковой поверхности кругового цилиндра, находящейся под первым витком винтовой линии и выше плоскости z = 0. 9.
Найдите координаты центра тяисести |
однородной полуарки циклоиды Вычислите криволинейные интегралы 2-го рода: дуга кривой у = х3 отточки (0,0) до точки верхняя половина эллипса , пробегаемая против хода часовой стрелки. где точки соединены кривой Ч2Г при . — дуга первой арки циклоиды пробегаемая в направлении возрастания параметра t. — окружность , пробегаемая против хода часовой стрелки. Указание . Используйте параметрические уравнения окружности. — виток винтовой линии — ломаная с вершинами 17.
Найдите массу дуги AB кривой у = lnz, если в каждой ее точке линейная плотность пропорциональна квадрату абсциссы точки, причем . 18. Найдите длину дуги кривой j между ее точками пересечения с осями координат. 19. Найдите площадь, ограниченную астроидой 20. Найдите работу силового поля j, когда точка массы m описывает окружность х = а соs t, у = a sin t, двигаясь по ходу часовой стрелки. 21. Поле образовано силой .
Вычислите работу при перемещении единицы массы по контуру квадрата со сторонами Применив формулу Пэина, вычислите интегралы в задачах 22-24: по контуру ЬАВС с вершинами по контуру фигуры, ограниченной линиями у вдоль единичной окружности в положительном направлении Формула Грина Площадь плоской области Масса кривой Площадь цилиндрической поверхности.
Площадь плоской фигуры Обобщение случай пространственной кривой — вдоль контура квадрата с вершинами в точках Л(1,0), при положительном направлении обхода. Ответы Указание. Перейдите к полярным координатам. Указание. Воспользуйтесь формулами (в зависимости от направления обхода).. Указание. Данный интеграл несобстве нный, так как в точках пересечения контура интегрирования с прямой х + у = 0 подынтегральн ос выражение принимает вид g. Формулу фина применять нельзя.
Присылайте задания в любое время дня и ночи в whatsapp.
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Источник