Рецепторные механизмы действия лекарственных веществ
Цель данной статьи состоит в том, чтобы объяснить механизмы действия лекарств путем объединения эффектов, производимых ими на молекулярном, клеточном, тканевом и системном уровнях биологического организма. Основное внимание уделено действию на молекулярном и клеточном уровнях, а специфические действия лекарств на ткани и системы организма рассматриваются в соответствующих главах.
Лекарственные средства действуют на четырех разных уровнях:
• молекулярном, на котором белковые молекулы являются непосредственными мишенями для большинства лекарств. Эффекты на данном уровне определяют действие лекарств на следующем уровне;
• клеточном, на котором биохимические и другие компоненты клетки участвуют в процессах трансдукции;
• тканевом, на котором происходит изменение функций сердца, кожи, легких и др.;
• системном, на котором происходит изменение функций сердечно-сосудистой и нервной систем, желудочно-кишечного тракта и др.
Для того чтобы понять механизм действия лекарств, необходимо знать, на какие молекулярные мишени действует вещество, природу системы трансдукции (клеточный ответ), типы ткани-мишени и механизмы, посредством которых ткань воздействует на системы организма. Механизмы действия лекарственных веществ нужно рассматривать на каждом из четырех уровней.
В качестве примера можно привести препарат пропранолол — бета-адреноблокатор, используемый для лечения некоторых заболеваний, в том числе стенокардии, сердечной недостаточности из-за локальной ишемии (т.е. недостаточного кровотока) в сердце:
• на молекулярном уровне пропранолол — конкурентный обратимый антагонист адреналина и норадреналина за действие на бета-адренорецепторы;
• на клеточном уровне пропранолол предотвращает (3-адренозависимое увеличение внутриклеточного циклического аденозинмонофосфата (цАМФ), инициирующего фосфорилирование белков, мобилизацию ионов кальция и окислительный метаболизм;
• на тканевом уровне пропранолол предотвращает бета-адренозависимое увеличение силы и частоты сердечных сокращений, т.е. оказывает отрицательные инотропный и хронотропный эффекты;
• на системном уровне пропранолол улучшает функцию сердечно-сосудистой системы. Он снижает бета-адренозависимый ответ сердца на активность симпатической нервной системы, уменьшая тем самым потребность тканей сердца в кровотоке, что целесообразно при ограниченном притоке крови (например, при ишемии коронарных артерий).
Механизм действия лекарственных средств на четырех уровнях также можно показать на примере рифампицина, хотя этот препарат действует больше на бактерии, чем на ткани человека. Рифампицин — это эффективный препарат для лечения туберкулеза:
• на молекулярном уровне рифампицин связывает (и блокирует активность) полимеразы рибонуклеиновой кислоты (РНК) в микобактерии, которая вызывает туберкулез;
• на клеточном уровне рифампицин ингибирует синтез РНК в микобактерии и таким образом убивает ее;
• на тканевом уровне рифампицин предотвращает повреждение ткани легких, возникающее вследствие инфекции микобактерии;
• на системном уровне рифампицин предотвращает недостаточность легочной функции, вызванную инфекцией микобактерии.
Источник
Рецепторные механизмы действия лекарственных веществ
. Механизмы действия лекарственных веществ, их краткая характеристика. Рецепторный механизм действия лекарственных веществ, типы рецепторов. Лекарственные вещества как агонисты (в т.ч. частичные) и антагонисты лигандов. Взаимодействие лекарств со специфическими рецепторами биологически активных веществ. Роль цАМФ, фосфатидилинозитола и других вторичных медиаторов (мессенджеров) в механизмах действия лекарственных средств .
– это способ взаимодействия лекарственного вещества со специфическими участками связывания в организме человека. Воз можны следующие механизмы действия лекарственных веществ.
1. Физические и физико-химические механизмы. В этих случаях речь может идти об изменении проницаемости и других качеств клеточных оболочек вследствие растворения в них лекарственного вещества или его адсорбции.
2. Химические механизмы. когда лекарственное вещество вступает в химическую реакцию с составными частями тканей или жидкостей организма.
Лекарственные средства могут действовать на специфические рецепторы, ферменты, мембраны клеток или прямо взаимодействовать с веществами клеток.
Специальные клеточные структуры, обеспечивающие взаимодействие между лекарственным веществом и организмом, называются циторецепторами. Они имеют структуру липопротеинов, гликопротеинов, металлопротеинов, нуклеопротеинов . Концепция циторецепторов была предложена Паулем Эрлихом начале XX в.
В структуре циторецепторов присутствуют домен для связывания лигандов и эффекторный домен. Активные центры циторецепторов образованы функциональными группами аминокислот, фосфатидов, нуклеотидов, сахаров.
Лекарственные средства устанавливают с циторецепторами непрочные вандерваальсовы, ионные, водородные, дипольные по принципу комплементарности (активные группы лекарств взаимодействуют с соответствующими группами активного центра циторецепторов).
Необратимые ковалентные связи с циторецепторами образуют немногие вещества — необратимые ингибиторы холинэстеразы, тяжелые металлы.
По отношению к циторецепторам лекарственные средства обладают аффинитетом -способность образовывать комплекс с циторецепторами. В зависимости от выраженности аффинитета лекарственные средства разделяют на 2 группы:
· агонисты — вещества с умеренным аффинитетом и высокой внутренней активностью: полные агонисты, частичные (парциальные) агонисты
· антагонисты — вещества с высоким аффинитетом, но лишенные внутренней активности. Они препятствуют развитию клеточного ответа, усиливая эффекты других, неблокированных циторецепторов. Вещества, блокирующие активные центры циторецепторов- конкурентные антагонисты.
Циторецепторы классифицируют на 4 типа
2- рецепторы ионных каналов;
3- рецепторы, ассоциированные с G -белками;
4- рецепторы-регуляторы транскрипции.
1- связаны с плазматической мембраной клеток, внеклеточный домен для взаимодействия с лигандами, внутриклеточный— протеинкиназа. Фосфорилируют белки клеток — киназы, регуляторные и структурные белки. Примеры циторецепторов-протеинкиназ — рецепторы инсулина, цитокинов,
2- повышают проницаемость мембран для Na + , K + , Са 2+ и С l — , обеспечивают мгновенный клеточный ответ. Примеры рецепторов ионных каналов: Н-холинорецепторы, ГАМК А -рецепторы.
3- Циторецепторы, ассоциированные с G -белками- интегральные мембранные белки, включают внеклеточный N -конец и внутриклеточный С-конец, 7 трансмембранных доменов, Внеклеточные и трансмембранные домены участвуют в связывании лигандов и активации циторецепторов.
Эффекторная система представлена аденилатциклазой, фосфолипазами А 2 , С и D , белками ионных каналов, транспортными белками. При возбуждении рецепторов образуются внутриклеточные биологически активные вещества — вторичные мессенджеры.
Аденилатциклаза превращает АТФ во вторичный мессенджер цАМФ.
Наибольшее значение имеют следующие эффекты цАМФ:
· активация протеинкиназ, катализирующих фосфорилирование ферментов и структурных белков клеток;
· транспорт ионов кальция в нервные окончания, клетки желез, миокард, скелетные мышцы, тромбоциты;
Фосфолипаза С катализирует гидролиз фосфатидилинозитолдифосфата. Продукты реакции — вторичные мессенджеры инозитолтрифосфат и диацилглицерол.
Циторецепторы, связанные с фосфолипазой С:
5- HT 2 -рецепторы серотонина;
Источник
Рецепторные механизмы действия лекарственных веществ
Лекарства (включая такие растительные алкалоиды, как никотин, кураре и атропин), которые оказывают сходные или противоположные нейротрансмиттерам эффекты, привели Лэнгли к формулировке теории рецепторов. Изучение действия этих средств первоначально сводилось к оценке их эффектов у животных и на изолированных тканях: например, на артериальное давление, частоту сердечных сокращений, секрецию или, чаще, сокращения гладких мышц кишечника, бронхов, сосудов или матки. Эти эффекты давно расценивают как побочную реакцию на взаимодействие лекарств с их рецепторами. Теория рецепторов способствовала развитию подходов, использующих эти данные для классификации лекарств по рецепторам, с которыми они взаимодействуют, и разработке новых лекарств, нацеленных на специфические рецепторы.
Классические рецепторы нейротрансмиттеров или гормонов в основном представлены крупными белками, содержащими участки, которые «распознаются» лекарствами и связываются с ними. Эти связывающие центры обычно ассоциированы с системой переноса
Стало ясно, что многие рецепторы являются белками. Они содержат как минимум один отдельный центр, с которым связываются и агонисты, и антагонисты. Когда связывается агонист, он запускает цепь трансдукции, которая либо непосредственно вызывает измеримый ответ (например, открытие канала), либо изменяет активность фермента, что в свою очередь приводит к измеримому ответу. Связь между действием агониста и трансдукцией может быть прямой или вовлекать в действие вторичные мессенджеры и каскад других белков. В общем случае трансдукцию вызывает не распознаваемый участок, а, скорее, происходящие аллостерические изменения рецепторной молекулы, обусловливающие каталитическую активность других частей белка (обычно во внутриклеточной среде). При этом другие части молекулы рецептора могут работать как мишени для других типов лекарств-ингибиторов, которые не являются конкурентными антагонистами.
Активный комплекс агонист-рецептор инициирует трансдукцию либо локально на уровне мембраны, либо внутриклеточно. Примеры системы трансдукции приведены далее. Общепризнано, что в большинстве случаев ассоциация агониста с рецептором ведет к конформационным изменениям последнего и возникновению активного комплекса лекарство-рецептор. Это дает основу для модели, с помощью которой можно объяснить различное действие агонистов, частичных агонистов и антагонистов.
С рецептором могут связываться различные типы лекарства. Здесь связывание определяет лекарство в качестве лиганда для рецептора, а результат связывания показывает, является ли лекарство аго-нистом, антагонистом, частичным агонистом или обратным агонистом:
• если лиганд связывается с рецептором и вызывает молекулярный ответ (конформационное изменение рецептора) с последующим клеточным ответом, это агонист;
• если лиганд связывается с рецептором без индукции молекулярного ответа, ведущего к клеточному и тканевому ответу, и конкурентно блокирует доступ агониста к рецептору, этот лиганд рассматривают как конкурентный антагонист;
• если лиганд связывается с рецептором таким образом, что даже высокие концентрации не могут вызвать достаточный молекулярный ответ, лиганд называют частичным агонистом. Следовательно, максимальный тканевый ответ на действие частичного агониста будет меньше, чем на действие «полного» агониста;
• если лиганд связывается с рецептором, который в отсутствие агониста находится в активном состоянии, и делает этот рецептор неактивным, этот лиганд — обратный агонист. Базальный уровень активности вызывает фоновый уровень трансдукции и клеточных эффектов. Когда обратный агонист связывается с активным рецептором, он инактивирует его и тем самым ингибирует базальную активность.
Источник
Механизмы действия лекарственных средств
Механизмы действия лекарственных веществ — это способы, которыми вещества вызывают фармакологические эффекты. К основным механизмам действия лекарственных веществ относят :
Механизм прямого химического взаимодействия.
Физический механизм действия. Действие лекарственного вещества связано с его физическими свойствами. Например, уголь активированный специально обработан, в связи с чем обладает большой поверхностной активностью. Это позволяет ему абсорбировать газы, алкалоиды, токсины и др.
Прямое химическое взаимодействие. Это достаточно редкий механизм действия ЛС, суть которого заключается в том, что ЛС непосредственно взаимодействует с молекулами или ионами в организме. Таким механизмом действия обладает, например, препарат унитиол, относящийся к группе антидотов. В случае отравления тиоловыми ядами, в том числе солями тяжелых металлов, унитиол вступает с ними в прямую химическую реакцию, в результате чего образуются нетоксичные комплексы, которые выводятся из организма с мочой. Таким образом действуют и антациды, вступающие в прямое химическое взаимодействие с соляной кислотой, понижая кислотность желудочного сока.
Мембранный (физико-химический) механизм. Связан с влиянием ЛС на токи ионов (Na + , K + , Cl ־ и др.), определяющих трансмембранный электрический потенциал. По такому механизму действуют средства для наркоза, антиаритмические препараты, местные анестетики и др.
Ферментативный (биохимический) механизм. Этот механизм определяется способностью некоторых ЛС оказывать активирующее или угнетающее влияние на ферменты. Арсенал ЛС с таким механизмом действия весьма широк. Например, антихолинэстеразные препараты, ингибиторы моноаминооксидазы, блокаторы протонной помпы и др.
Рецепторный механизм. В организме человека существуют высокоспецифичные биологически активные вещества (медиаторы), которые взаимодействуют с рецепторами и изменяют функции тех или иных органов или тканей организма.
Рецепторы — это макромолекулярные структуры, обладающие избирательной чувствительностью к определенным химическим соединениям. При взаимодействии ЛС с рецепторами происходят биохимические и физиологические изменения в организме, сопровождающиеся тем или иным клиническим эффектом.
Медиаторы и лекарственные вещества, активирующие рецепторы и вызывающие биологический эффект, называются агонистами. Лекарственные вещества, связывающиеся с рецепторами, но не вызывающие их активации и биологического эффекта, уменьшающие или устраняющие эффекты агонистов, называются антагонистами. Выделяют также агонисты-антагонисты — вещества, которые по-разному действуют на подтипы одних и тех же рецепторов: одни подтипы рецепторов они стимулируют, а другие — блокируют. Например, наркотический анальгетик налбуфин стимулирует опиоидные каппа-рецепторы (поэтому снижает болевую чувствительность) и блокирует опиоидные мю-рецепторы (поэтому менее опасен в плане лекарственной зависимости).
Способность веществ связываться с рецепторами обозначают термином «аффинитет». По отношению к одним и тем же рецепторам аффинитет разных веществ может быть различным.
Выделяют следующие виды рецепторов :
Рецепторы плазматических мембран :
канального типа: Н-холинорецепторы нервного типа, Н-холиноре-цепторы мышечного типа, ГАМК-рецепторы;
рецепторы, связанные с G-белком: α- и β-адренорецепторы, М3-хо-линорецепторы;
рецепторы интегративного типа: NO-рецептор.
Источник