Фармакология. Инновационные лекарственные формы
Новые аудиокурсы повышения квалификации для педагогов
Слушайте учебный материал в удобное для Вас время в любом месте
откроется в новом окне
Выдаем Удостоверение установленного образца:
СМОЛЕНСКОЕ ОБЛАСТНОЕ Государственное БЮДЖЕТНОЕ
ПРОФЕССИОНАЛЬНОЕ образовательное учреждение
«Вяземский медицинский колледж имени Е.О. Мухина »
Тема: «Инновационные лекарственные формы и способы их изыскания»
Выполнил: студент 32Ф гр.
Волков Данила Юрьевич
Грибова Наталья Геннадьевна
2019/2020 учебный год
Новые лекарственные формы до того, как появиться в аптеках проходят сложный и длительный процесс создания. После проведения экспериментального этапа разработки, связанного с поиском биологически активного соединения, создания устойчивой лекарственной формы, подбора оптимальных схем дозирования, проводят опытную наработку препарата и его биофармацевтические испытания. После этого отрабатывают все нужные регламенты и создают фармакопейные статьи, препарат тщательно проверяют, стандартизуют и контролируют в фармакопейном комитете. Проводят широкие фармакологические исследования и клинические испытания, организуемые в фармакологическом комитете, в результате данных мероприятий решается вопрос о запуске препарата и применение его в медицинской практике.
К моменту выведения нового препарата на фармацевтический рынок нужно тщательно ознакомиться с официальной информацией по препарату и основываясь на сумме фармакологических знаний, умело пользоваться ими на практике при отпуске лекарственных препаратов.
Инновационные лекарственные формы
Помимо традиционных лекарственных форм (ЛФ), характеризующихся немедленным и неконтролируемым высвобождением лекарственного вещества (ЛВ), существуют ЛФ с модифицированным высвобождением, характеризующиеся изменением механизма и характера высвобождения ЛВ.
Создание новых систем и средств доставки лекарственных средств (ЛС) направлено на повышение терапевтической эффективности, переносимости и безопасности лекарственной терапии. Это направление существует параллельно с поиском и синтезом новых субстанций для ЛС, отвечающих тем же запросам клинической практики.
Контролируя процесс доставки и высвобождения ЛС, можно управлять терапевтическим эффектом, избежать передозировки или недостаточной эффективности, увеличить продолжительность эффекта и одновременно уменьшить кратность введения, а также повысить комплайнс, или приверженность больных к лечению.
Основной целью поиска новых технологий доставки ЛС является обеспечение контроля процесса поступления ЛВ в организм с возможностью влияния и/или управления этим процессом для поддержания эффективной концентрации ЛВ в плазме крови или тканях в течение длительного времени.
Непосредственными задачами при создании новых систем и средств доставки ЛС являются:
• повышение биодоступности ЛС;
• обеспечение пролонгированного терапевтического эффекта ЛС;
• обеспечение целенаправленной доставки ЛС к фармакологической мишени.
Для реализации этих задач создаются ЛФ с модификацией скорости и места высвобождения ЛВ, разрабатываются новые системы и средства целенаправленной доставки ЛС.
ЛФ с модифицированным высвобождением имеют самое широкое применение в кардиологии (антагонисты кальция, нитровазодилататоры, антиаритмические препараты, тромболитики), онкологии (противоопухолевые средства), пульмонологии (противоастматические средства), эндокринологии (инсулины), гинекологии (контрацептивы), офтальмологии и др. Они представляют собой пероральные, парентеральные, имплантационнные, ингаляционные, трансдермальные ЛФ, а также ЛФ для локального применения (например, глазные).
Для создания современных систем доставки ЛС разрабатываются специальные технические средства и устройства (дозирующие насосы и устройства, автоматические портативные системы введения, микроиглы и т.п.).
Так, в 1990е годы были разработаны ингаляционные средства доставки (небулайзеры), в начале ХХI в. – автоматические системы для непрерывного введения инсулина.
Классификация ЛФ с модифицированным высвобождением
Существует несколько подходов к классификации ЛФ с модифицированным высвобождением: по технологии создания, по механизму высвобождения, по используемым носителям, по фармакокинетическим и терапевтическим характеристикам.
По технологии создания различают три типа ЛФ с модифицированным высвобождением:
• монолитные (матриксные) системы;
• резервуарные (мембранные) системы;
• насосные (осмотические) системы.
Основу монолитной системы составляет матрикс, который может иметь различные физико — химические свойства.
Гидрофильный матрикс (например, гидрогель) способен впитывать большое количество воды и используется для высвобождения гидрофильных ЛС. Гидрофобные матриксы нерастворимы в воде, но способны к набуханию в присутствии жидкости или биодеградации путем гидролиза или химических превращений, при этом в них появляются микропоры, эрозии и микроканалы, через которые высвобождается ЛВ.
Резервуарная систе ма состоит из оболочки (мембраны), которая образует резервуар, и ядра, в котором находится ЛВ. Высвобождение ЛВ контролируется свойствами оболочки и осуществляется главным образом диффузией через поры мембраны, образующиеся после изменения ее проницаемости вследствие растворения, набухания или биодеградации. Если толщина мембраны не изменяется в процессе действия, то процесс высвобождения ЛВ описывается кинетикой “нулевого порядка”.
Осмотические системы доставки и высвобождения ЛС предназначены для контролируемого высвобождения на протяжении длительного времени. В резервуар с осмотическим веществом через полупроницаемую оболочку (мембрану) начинает с определенной скоростью из окружающего пространства поступать вода, приводя к расширению этого вещества и увеличению давления на резервуар с ЛВ.
Механизм высвобождения лекарственного средства из лекарственной формы
Различают системы, контролируемые диффузией, осмотическими, электромагнитными силами и др.
ЛВ может высвобождаться спомощью диффузии в растворимых системах, а также через полупроницаемую оболочку (для резервуарных типов) или нерастворимый матрикс (для монолитных типов) после их набухания или биодеградации.
Осмотическая система обеспечивает высвобождение ЛВ вследствие образующегося осмотического давления в резервуаре, окруженном полупроницаемой мембраной. Высвобождение ЛВ возможно под действием электромагнитных сил, создаваемых при помещении в матрикс соответствующих материалов.
Пероральные ЛФ с модифицированным высвобождением
Пероральный способ введения является одним из наиболее распространенных в клинической практике, поэтому создание пероральных ЛФ с модифицированным высвобождением имеет важное клиническое значение, и эти формы характеризуются самым большим многообразием.
Пероральные ЛФ с модифицированным высвобождением включают не только ЛФ, обеспечивающие замедленное, или пролонгированное, высвобождение, но и более сложные по кинетике высвобождения системы доставки.
Технологии быстрорастворимых/быстрораспадающихся ЛФ (БРЛФ) были созданы для решения проблем, связанных с глотанием твердых веществ и жидкостей. Целевой популяцией для использования БРЛФ.
Являются пожилые больные, дети и пациенты с рядом состояний и заболеваний, которые сопровождаются затруднением или невозможностью глотания или запивания ЛС водой (рецидивирующая рвота, особенно на фоне химиотерапии, психические заболевания, лежачие больные и др.).
БРЛФ растворяются в полости рта под действием слюны в течение 2–60 с и не требуют запивания жидкостью. БРЛФ соединяют в себе преимущества обычных таблеток и жидких форм (позволяя точно дозировать ЛС в отличие от последних).
Преимуществами ЛФ для полости рта являются:
• устранение эффекта пресистемного метаболизма ЛС в печени с увеличением системной биодоступности;
• предупреждение разрушения ЛС в ЖКТ под действием кислоты и пищеварительных ферментов;
• быстрое начало действия;
• повышение комплайнса пациентов (ЛФ более удобны в приеме – не требуют запивания и проглатывания).
Недостатки ЛФ для полости рта различны в зависимости от того, какой эффект необходимо достигнуть – локальный или системный.
Недостатками ЛФ, применяющихся с целью локального действия, являются неодинаковое распределение ЛС в слюне и ротовой полости, а также быстрая элиминация ЛС из полости рта вследствие проглатывания слюны или приема пищи, что может уменьшать продолжительность локального действия и требовать увеличения частоты приема препарата. Главным недостатком ЛФ для полости рта, применяющихся для получения системного эффекта, является относительно невысокая проницаемость слизистой оболочки полости рта, которая имеет решающее значение для всасывания и биодоступности ЛС.
Сублингвальные и буккальные ЛФ Сублингвальные ЛФ существуют в виде быстрораспадающихся таблеток или мягких желатиновых капсул, содержащих жидкие формы ЛВ. Сублингвальные ЛФ создают высокие концентрации ЛВ в сублингвальной области.
Буккальная (защечная) область имеет меньшую проницаемость для ЛВ и не может обеспечивать столь же быстрое всасывание и хорошую биодоступность ЛВ, по этому буккальные ЛФ используются для замедленного высвобождения и всасывания ЛВ. Строение буккальных ЛФ мало отличается от общих типов пероральных систем доставки . Было изучено буккальное применение многих ЛС – анальгетиков, гормонов, антибиотиков, кардиоваскулярных препаратов и др.
Источник
Предмет, задачи фармакологии. Этапы создания новых лекарств
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
ПРЕДМЕТ, ЗАДАЧИ И МЕТОДОЛОГИЯ ФАРМАКОЛОГИИ
Фармакология (от греч. pharmacon – лекарство, яд; и logos — учение) – наука о взаимодействии лекарственных веществ и организма.
Основными задачами фармакологии является создание и обоснование рационального применения новых лекарственных средств, и изучение новых свойств уже известных лекарственных препаратов.
Фармакология является самостоятельной наукой и составной частью современной терапии, она выполняет роль связующего звена между теоретическими знаниями и практической областью медицины. Являясь областью активного информационного обмена между естественнонаучной основой медицины – биологией, химией, физиологией, морфологией и специальным медицинским знанием — терапией (клиническими дисциплинами), фитотерапией, фармацией, токсикологией, фармакология дает почувствовать огромную взаимную пользу одного знания для другого.
Фармакология имеет большое общебиологическое значение. Раскрытие механизмов действия лекарственных веществ помогает расширить представления о химической сущности процессов, происходящих в живых клетках, механизмах регуляции функций систем организма. В этом случае лекарственные вещества выступают в роли фармакологических «зондов», помогающих оценить наличие, направленность и выраженность ответных реакций со стороны клеток, тканей, органов и систем.
Вначале на экспериментальных животных, а затем в организме человека фармакология изучает взаимодействие веществ любого происхождения с биологическими системами на различных уровнях организации: молекулярном, субклеточном, клеточном, тканевом, органном, на уровне функциональных систем и целостного организма.
В фармакологии, как в медико-биологической науке, принято выделять три основные части: теоретическую, экспериментальную и клиническую. Теоретическая и экспериментальная части фармакологической науки составляют фундаментальную фармакологию. Экспериментальная фармакология является связующим звеном между теоретической и клинической фармакологией.
Предмет экспериментальной фармакологии составляет моделирование механизмов взаимодействия лекарственных средств с биологическими системами (организм человека или экспериментального животного) на различных уровнях (субклеточный, тканевой, органный, системный) и изучение возникающих при этом эффектов. В экспериментальной фармакологии, являющейся основой для решения новых задач в области фармакологической науки, можно выделить три основных методических подхода: биохимический; физиологический; морфологический.
Используя биохимический подход, фармакология изучает природу реакций взаимодействия между лекарственным веществом и биомолекулами. Используя физиологический и морфологический подходы, фармакология анализирует изменения функции и строения органов и систем, вызываемых фармакологическим воздействием.
ИСТОЧНИКИ ПОЛУЧЕНИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ
Существуют различные источники, из которых современными технологическими методами можно получить лекарственные вещества.
- Минеральные соединения (магния сульфат, натрия сульфат).
- Ткани и органы животных (инсулин, препараты гормонов щитовидной железы, ферментные препараты, препараты, регулирующие пищеварение).
- Растения (сердечные гликозиды, морфин, резерпин).
- Микроорганизмы (антибиотики: пенициллины, цефалоспорины, макролиды и др.). В 40-х годах XX века была впервые разработана технология получения антибиотиков из почвенных грибов. С 80-х годов XX века разработана технология получения лекарственных средств методом генной инженерии (человеческие инсулины).
- Химический синтез (сульфаниламиды, парацетамол, кислота вальпроевая, новокаин, кислота ацетилсалициловая). С середины XIX века лекарственные вещества активно стали получать химическим путем. Большинство современных лекарственных веществ являются продуктами химического синтеза.
ЭТАПЫ СОЗДАНИЯ НОВЫХ ЛЕКАРСТВЕННЫХ СРЕДСТВ
Разработка новых лекарственных средств осуществляется совместными усилиями многих отраслей науки, при этом основная роль принадлежит специалистам в области химии, фармакологии, фармации. Создание нового лекарственного средства представляет собой ряд последовательных этапов, каждый из которых должен отвечать определенным положениям и стандартам, утвержденным государственными учреждениями – Фармакопейным Комитетом, Фармакологическим Комитетом, Управлением МЗ РФ по внедрению новых лекарственных средств.
Процесс создания новых лекарственных средств выполняется в соответствии с международными стандартами – GLP (Good Laboratory Practice – Качественная лабораторная практика), GMP (Good Manufacturing Practice – Качественная производственная практика) и GCP (Good Clinical Practice – Качественная клиническая практика).
Знаком соответствия разрабатываемого нового лекарственного средства этим стандартам является официальное разрешение процесса их дальнейшего исследования – IND (Investigation New Drug).
Получение новой активной субстанции (действующего вещества или комплекса веществ) идет по трем основным направлениям.
Химический синтез лекарственных веществ
- Эмпирический путь: скрининг, случайные находки;
- Направленный синтез: воспроизведение структуры эндогенных веществ, химическая модификация известных молекул;
- Целенаправленный синтез (рациональный дизайн химического соединения), основанный на понимании зависимости «химическая структура – фармакологическое действие».
Эмпирический путь (от греч. empeiria — опыт) создания лекарственных веществ основан на методе «проб и ошибок», при котором фармакологи берут ряд химических соединений и определяют с помощью набора биологических тестов (на молекулярном, клеточном, органном уровнях и на целом животном) наличие или отсутствие у них определенной фармакологической активности. Так, наличие противомикробной активности определяют на микроорганизмах; спазмолитической активности — на изолированных гладкомышечных органах (ex vivo); гипогликемической активности – по способности понижать уровень сахара в крови испытуемых животных (in vivo). Затем среди исследуемых химических соединений выбирают наиболее активные и сравнивают степень их фармакологической активности и токсичности с существующими лекарственными средствами, которые используются в качестве стандарта. Такой путь отбора активных веществ получил название лекарственного скрининга (от англ. screen — отсеивать, сортировать). Ряд препаратов был внедрен в медицинскую практику в результате случайных находок. Так было выявлено противомикробное действие азокрасителя с сульфаниламидной боковой цепью (красного стрептоцида), в результате чего появилась целая группа химиотерапевтических средств – сульфаниламиды.
Другой путь создания лекарственных веществ состоит в получении соединений с определенным видом фармакологической активности. Он получил название направленного синтеза лекарственных веществ. Первый этап такого синтеза заключается в воспроизведении веществ, образующихся в живых организмах. Так были синтезированы адреналин, норадреналин, ряд гормонов, простагландины, витамины.
Химическая модификация известных молекул позволяет создать лекарственные вещества, обладающие более выраженным фармакологическим эффектом и меньшим побочным действием. Так, изменение химической структуры ингибиторов карбоангидразы привело к созданию тиазидных диуретиков, обладающих более сильным диуретическим действием.
Введение дополнительных радикалов и фтора в молекулу налидиксовой кислоты позволило получить новую группу противомикробных средств – фторхинолонов с расширенным спектром противомикробного действия.
Целенаправленный синтез лекарственных веществ подразумевает создание веществ с заранее заданными фармакологическими свойствами. Синтез новых структур с предполагаемой активностью чаще всего проводится в том классе химических соединений, где уже найдены вещества, обладающие определенной на больной не знают, какой препарат применяется – новый, контрольный или плацебо, и тройным слепым (triple-blind) методом, когда ни врач, ни больной, ни организаторы и статистики не знают назначенной терапии у конкретного пациента. Эту фазу рекомендуют проводить в специализированных клинических центрах. Данные, полученные в клинических испытаниях III фазы, являются основой для создания инструкции по применению препарата и важным фактором для принятия официальными инстанциями решения о его регистрации и возможности медицинского использования.
Исследования биоэквивалентности лекарственных препаратов
Оценка биоэквивалентности лекарственных препаратов является основным видом контроля качества воспроизведенных (генерических) препаратов -лекарственных препаратов, содержащих то же лекарственное вещество в той же дозе и лекарственной форме, что и оригинальный лекарственный препарат.
Два лекарственных препарата (в одной лекарственной форме) являются био-эквивалентными, если они обеспечивают одинаковую биодоступность лекарственного вещества и одинаковую скорость достижения максимальной концентрации вещества в крови.
Исследования биоэквивалентности позволяют сделать обоснованные заключения о качестве сравниваемых препаратов по относительно меньшему объему первичной информации и в более сжатые сроки, чем при проведении клинических исследований. В Российской Федерации исследования биоэквивалентности регламентируются «Методическими рекомендациями по проведению качественных клинических исследований биоэквивалентности лекарственных препаратов».
Регистрация лекарственного препарата
Полученные в ходе исследований данные оформляются в виде соответствующих документов, которые направляются в государственные организации, регистрирующие данный препарат и дающие разрешение на его медицинское применение. В Российской Федерации регистрация лекарственных препаратов производится Министерством здравоохранения РФ.
Постмаркетинговые испытания
Регистрация препарата не означает, что исследования его фармакологических свойств прекращены. Существует IV фаза клинических испытаний, которая получила название «постмаркетинговых исследований», т.е. IV фаза клинических исследований проводится после начала продажи препарата с целью получения более подробной информации о безопасности и эффективности препарата в различных лекарственных формах и дозах, при длительном применении у различных групп пациентов, что позволяет более полно оценить стратегию применения препарата и выявить отдаленные результаты лечения. В исследованиях принимает участие большое количество пациентов, что позволяет выявить ранее неизвестные и редко встречающиеся нежелательные эффекты. Исследования IV фазы также направлены на оценку сравнительной эффективности и безопасности препарата. Полученные данные оформляются в виде отчета, который направляется в организацию, давшую разрешение на выпуск и применение препарата.
В том случае, если после регистрации препарата проводятся клинические испытания, целью которых является изучение новых, незарегистрированных свойств, показаний, методов применения или комбинаций лекарственных веществ, то такие клинические испытания рассматриваются, как испытания нового лекарственного препарата, т.е. считаются исследованиями ранних фаз.
правленностью действия. Примером может служить создание блокаторов Н2-гистаминовых рецепторов. Было известно, что гистамин является мощным стимулятором секреции хлористоводородной кислоты в желудке и что противогистаминные средства (применяемые при аллергических реакциях) не устраняют этот эффект. На этом основании был сделан вывод, что существуют подтипы гистаминовых рецепторов, выполняющих различные функции, и эти подтипы рецепторов блокируются веществами разной химической структуры. Была выдвинута гипотеза, что модификация молекулы гистамина может привести к созданию селективных антагонистов гистаминовых рецепторов желудка. В результате рационального дизайна молекулы гистамина в середине 70-х годов XX века появилось противоязвенное средство циметидин — первый блокатор Н2-гистаминовых рецепторов.
Выделение лекарственных веществ из тканей и органов животных, растений и минералов
Таким путем выделены лекарственные вещества или комплексы веществ: гормоны; галеновы, новогаленовы препараты, органопрепараты и минеральные вещества.
Выделение лекарственных веществ, являющихся продуктами жизнедеятельности грибов и микроорганизмов, методами биотехнологии (клеточной и генной инженерии)
Выделением лекарственных веществ, являющихся продуктами жизнедеятельности грибов и микроорганизмов, занимается биотехнология.
Биотехнология использует в промышленном масштабе биологические системы и биологические процессы. Обычно применяются микроорганизмы, культуры клеток, культуры тканей растений и животных.
Биотехнологическими методами получают полусинтетические антибиотики. Большой интерес представляет получение в промышленном масштабе инсулина человека методом генной инженерии. Разработаны биотехнологические методы получения соматостатина, фолликулостимулирующего гормона, тироксина, стероидных гормонов.
После получения новой активной субстанции и определения ее основных фармакологических свойств она проходит ряд доклинических исследований.
Доклинические испытания
Помимо изучения специфической активности, во время доклинических испытаний в опытах на животных полученная субстанция исследуется на острую и хроническую токсичность; исследуется также ее влияние на репродуктивную функцию; субстанция исследуется на эмбриотоксичность и тератогенность; канцерогенность; мутагенность. Эти исследования проводятся на животных в соответствии со стандартами GLP. В ходе этих исследований определяют среднюю эффективную дозу (ЕД50 – доза, которая вызывает эффект у 50% животных) и среднюю летальную дозу (£Д50 — доза, которая вызывает гибель 50% животных).
Клинические испытания
Планирование и проведение клинических испытаний проводятся клиническими фармакологами, клиницистами, специалистами по статистике. Эти испытания проводятся на основе системы международных правил GCP. В Российской
Федерации на основе правил GCP разработан и применяется стандарт отрасли «Правила проведения качественных клинических испытаний».
Правила GCP – это свод положений, в соответствии с которыми планируются и проводятся клинические испытания, а также анализируются и обобщаются их результаты. При следовании этим правилам полученные результаты действительно отражают реальность, а пациенты не подвергаются необоснованному риску, соблюдаются их права и конфиденциальность личной информации. Другими словами, GCP объясняет, как получать достоверные научные данные и заботиться при этом о благополучии участников медицинских исследований.
Клинические испытания проводятся в 4 фазы.
I фаза клинических испытаний проводится с участием небольшого числа добровольцев (от 4 до 24 человек). Каждое исследование проводится в одном центре, длится от нескольких дней до нескольких недель.
Обычно к I фазе относятся фармакодинамические и фармакокинетические исследования. В ходе испытаний I фазы исследуют:
- фармакодинамику и фармакокинетику одной дозы и множественных доз при разных путях введения;
- биодоступность;
- метаболизм активной субстанции;
- влияние возраста, пола, пищи, функции печени и почек на фармакокинетику и фармакодинамику активной субстанции;
• взаимодействие активной субстанции с другими лекарственными средствами.
В ходе I фазы получают предварительные данные о безопасности препарата и
дают первое описание его фармакокинетики и фармакодинамики у человека.
II фаза клинических испытаний предназначена для оценки эффективности активной субстанции (лекарственного вещества ) у больных с профильным заболеванием, а также для выявления отрицательных побочных явлений, связанных с применением препарата. Исследования II фазы проводят под очень строгим контролем и наблюдением на больных в группе 100—200 человек.
III фаза клинических испытаний представляет собой многоцентровые расширенные исследования. Они проводятся после получения предварительных результатов, указывающих на эффективность лекарственного вещества, и их главная задача — получить дополнительные сведения по эффективности и безопасности различных лекарственных форм препарата, которые необходимы для оценки общего соотношения пользы и риска от его применения, а также для получения дополнительных сведений для составления медицинской маркировки. Проводится сопоставление с другими препаратами этой группы. Эти исследования обычно охватывают от нескольких сотен до нескольких тысяч человек (в среднем 1000— 3000). В последнее время появился термин «мегаисследования», в которых могут принимать участие свыше 10 000 пациентов. В ходе проведения III фазы определяются оптимальные дозы и схемы введения, изучаются характер наиболее частых нежелательных реакций, клинически значимые лекарственные взаимодействия, влияние возраста, сопутствующих состояний и т.п. Условия исследований максимально приближены к реальным условиям применения препарата. Такие исследования вначале проводятся с использованием открытого метода (open) (врач и больной знают, какой препарат применяется – новый, контрольный или плацебо). Дальнейшие исследования проводятся одинарным слепым (single-blind) методом (больной не знает, какой препарат применяется — новый, контрольный или плацебо), двойным слепым (double-blind) методом, при котором ни врач, ни
Источник