Перспективы использования лекарственных растений
Использование растительного лекарственного сырья, начавшееся на самых ранних стадиях развития человечества, в последние десятилетия стало уступать свои позиции препаратам производимым в условиях промышленного производства из сырья органических соединений – продуктов производства химической промышленности.
Однако в последнее время появляется все большее количество работ, свидетельствующих о значимой роли растительного лекарственного сырья как основы для изготовления препаратов, позволяющих эффективно проводить профилактику и терапию различных заболеваний, в том числе и социально значимых (1,2).
Нами проведен опрос 32 врачей, пациенты которых страдают социально значимыми заболеваниями – кардиологов, эндокринологов, неврологов и психиатров Курской и Орловской областей, с целью определить их мнение по поводу преимуществ и недостатков назначения препаратов, произведенных на основе растительного лекарственного сырья.
Основными преимуществами названы: мягкое и пролонгированное действие препаратов, высокая эффективность применения на начальных стадиях хронических социально значимых заболеваний, сопутствующих функциональных нарушениях и при профилактике их возникновений, низкая стоимость. К недостаткам были отнесены: скептическое отношение пациентов к препаратам данного ряда, необходимость учета полимодального действия препаратов, в том числе в комплексной медикаментозной терапии, значительное снижение количества аптек, в которых по назначению лечащего врача могут быть изготовлены препараты на основе растительного сырья.
Источник
Перспективы использования лекарственных растений
Использование различных частей растений в качестве пищи и получения напитков, а также применение лекарственных растений в лечении многих заболеваний является древней традицией многих народов. В последние годы исследователей вновь заинтересовала возможность применения натуральных веществ для улучшения качества пищевых продуктов [1]. Известно, что большинство необходимых организму фитохимических веществ содержится в растениях. К такой группе биоактивных соединений относятся полифенолы, которые являются одними из многочисленных вторичных метаболитов растений и составляют неотъемлемую часть рациона человека. Полифенольные соединения вызывают интерес ученых ввиду их эффективности при лечении и профилактике рака, нейродегенеративных заболеваний, атеросклероза, расстройств сердечно-сосудистой системы и др. Разносторонний терапевтический эффект полифенольных соединений связывают с их свойствами снижать образование свободных радикалов, приводящих к развитию окислительного стресса [2, 3].
Чайные напитки являются заменителями классического чая. Получают чайные напитки путем купажирования предварительно подготовленного лекарственного сырья и дикорастущих плодов и ягод. Ценность этих напитков заключается в восполнении дефицита тех или иных веществ в питании человека, таким образом, они являются компенсаторами несбалансированного питания человека. Как известно, чайные напитки могут быть однокомпонентными – из одного вида растительного сырья и многокомпонентыми, с добавлением и без добавления чая [4].
Известно, что зеленый чай является распространенным напитком и обладает множеством положительных эффектов на организм в силу своего уникального состава. Однако, зачастую в ходе технологических манипуляций при изготовлении готовых чайных напитков происходит потеря полезных свойств чайного листа [5].
Целью нашей работы явилось исследование антиоксидантных свойств ряда лекарственных растений из семейства сложноцветные (Asteraceae), а также их сочетанного действия с экстрактом зеленого чая для возможности применения в приготовлении чайных напитков.
Материалы и методы исследования
Объектами исследований служили растения семейства сложноцветных: лопух войлочный (Arctium tomentosum), девясил высокий (Inula helenium), ромашка аптечная (Matricaria recutita), мать и мачеха (Tussilago farfara), тысячелистник азиатский (Achillea asiatica), тысячелистник обыкновенный (Achillea millefolium), сушеница болотная (Gnaphalium pallustris), эхинацея пурпурная (Echinacea purpurea), василек синий (Centaurea cyanus), полынь рутолистная (Artemisia rutefolia), полынь цитварная (Artemisia cina). полынь обыкновенная (Artemisia vulgaris), череда трехраздельная (Bidens tripartite), календула обыкновенная (Calendula officinalis), из которых получали экстракты.
В соответствии с целью и задачами работы эксперименты проводились условиях in vitro. Эксперименты в условиях in vitro проводили на микросомах печени белых беспородных крыс массой 300–350 г.
Приготовление экстрактов. Для получения экстрактов сухое сырье измельчали и экстрагировали дважды 50 % спиртом в соотношении 1:8 сырье-экстрагент при температуре 20–25 °С. Время экстракции составило 20 часов. Полученные экстрагенты центрифугировали при 1000 g, отфильтровывали, смешивали. Полученные экстракты использовали для дальнейших исследований на микросомальных фракциях, выделенных из печени крыс.
Для получения гомогената навеску (0,5–1,0 г) ткани печени крыс после промывания в охлажденном физиологическом растворе помещали в 10 мл среды, содержащей 0,85 % NaCl и 50 мМ КН2РО4, (рН 7,4 при 4 °С) и гомогенизировали гомогенизатором типа Polytron в течение 90 сек. Гомогенат центрифугировали при 10000 g в течение 20 мин. Микросомную фракцию получали, центрифугируя супернатант при 30000 g в течение 60 мин. Надосадочную жидкость осторожно сливали и осадок, представляющий собой фракцию тяжелых микросом, суспендировали в среде, содержащей 25 % глицерина, 0,1 мМ ЭДТА, 0,2 мМ СаСl2, 10 мМ гистидина, (рН 7.2 при 4 °С) и хранили при температуре минус 4 °С. Об интенсивности ПОЛ в судили по содержанию ТБК-активных продуктов, одним из которях является малоновый диальдегид (МДА). Его концентрацию определяли по интенсивности развивающейся окраске в результате взаимодействия с тиобарбитуровой кислотой (ТБК) по методу Н.О. Ohkawa e.a. [6]. Для индукции процесса ПОЛ применяли систему Fe2+ (0,02 мМ)+аскорбат (0,5 мМ). Окисление проводили в среде гомогенизирования в термостатируемых ячейках при 37 °С с постоянным перемешиванием. За накоплением малонового диальдегида (МДА) – продукта ПОЛ, следили по реакции с 2-тиобарбитуровой кислотой, оптическую плотность измеряли при 532 нм. Расчет содержания продуктов, реагирующих с ТБК, проводили с учетом коэффициента молярной экстинкции МДА, равного 1,56×105 М-1×см-1. Проводили статистическую обработку данных.
Результаты исследования и их обсуждение
Для решения поставленных задач было проведено исследование влияния водно-этанольных экстрактов растений на состояние мембран печени крыс в условиях in vitro. Антиоксидантные свойства исследованных экстрактов растений семейства сложноцветных (Asteraceae) приведены в таблице.
Влияние экстрактов растений семейства сложноцветных (Asteraceae) на процессы ПОЛ в микросомах печени крыс
Источник
Перспективы использования лекарственных растений
В настоящее время на отечественном фармацевтическом рынке существует большое количество лекарственных препаратов, имеющих различное происхождение – синтетическое, полусинтетическое, природное. Наиболее востребованными из них являются препараты, произведенные и/или изготовленные из лекарственного растительного сырья. В современной научной медицине используются свыше 250 видов лекарственных растений, важнейшие из которых внесены в Государственную фармакопею РФ [1]. Они обладают различным терапевтическим действием, которое определяется содержащимися в лекарственном растительном сырье биологически активными веществами. Наиболее значимой группой таких веществ являются алкалоиды.
Алкалоиды – это группа азотсодержащих органических веществ природного происхождения, обладающих выраженной физиологической активностью. В растительном мире они наиболее распространены среди отдела Angiospermae (Magnoliophyta), реже – среди отдела Gymnospermae. Ими богаты семейства Papaveraceae, Solanaceae, Fabaceae, Campanulaceae, Ranunculaceae, Apocynaceae, Rutaceae, Loganiaceae, Ephedraceae, Malvaceae, Taxaceae и другие. Алкалоиды способны накапливаться в различных органах растения, локализуясь в клетках в виде солей органических и неорганических кислот. Содержание их как биологически активных веществ мало – оно составляет сотые и десятые доли процента [2]. Обычно растение имеет в своем химическом составе не один, а несколько видов алкалоидов, расположенных в разных его частях. Например, клубни Stephania glabra (Roxb.) Miers содержат сумму алкалоидов, в состав которых входят гиндарин, ротундин, стефарин и многие другие. Несмотря на это, в листьях и стебле обнаружен лишь один представитель – циклеанин. В траве Thermopsis lanceolata R.Br. имеется большое содержание алкалоидов термопсина, гомотермопсина, пахикарпина, анагирина, но как лекарственное растительное сырье его используют в качестве источника цитизина, накапливаемого в семенах. Помимо локализации алкалоиды отличаются и концентрацией, влияние на которую оказывают многочисленные факторы: климатические условия (температура, влажность), минеральный состав почвы, время суток и стадии вегетации. Известно, что в условиях повышенной влажности, количество алкалоидов постепенно снижается. На синтезирование и накопление данных биологически активных веществ благоприятно влияют богатые азотом почвы, высокая температура и продолжительность светового дня [3].
Несмотря на то, что алкалоиды активно используются для изготовления/производства лекарственных препаратов, обладающих различными фармакологическими эффектами, их биологическая роль в растении окончательно не выяснена. Существует множество теорий, но все они несостоятельны, так как не отражают полноту осуществляемых ими функций. Предполагается, что в процессе дыхания растения алкалоиды окисляются в пероксид, который затем переходит в оксид и высвобождаемый при этом процессе активированный кислород используется для дальнейшего фотосинтеза. Данные биологически активные вещества выступают в роли стимуляторов и регуляторов роста растений, т.е. фитогормонов. Также известно, что алкалоиды способны осуществлять защитную функцию, выражающуюся в предохранении растения от поедания представителями животного мира. Проведенная в Предуралье работа доказывает, что содержание алкалоидов в растении позволяет им сосуществовать с более конкурентоспособными видами за счет изменения ритма сезонного развития [4].
Многочисленные исследования алкалоидосодержащих растений и их свойств дали возможность производить и / или изготавливать лекарственные растительные препараты таким образом, чтобы сохранялось необходимое для терапевтического эффекта содержание биологически активного вещества. Существуют определенные особенности заготовки растительного сырья, методы выделения алкалоидов из растительного сырья, методы качественного и количественного анализа, методы и особенности производства лекарственных препаратов на основе данного действующего вещества.
Цель исследования: изучение фармакологических свойств препаратов алкалоидов. Задачи исследования представлены изучением видов лекарственных растений, содержащих данную группу действующих веществ, методов качественного и количественного анализа и особенностей производства и/или изготовления лекарственных растительных препаратов.
Материалы и методы исследования
Исследуемыми объектами настоящего исследования являются следующие лекарственные алкалоидосодержащие растения: Aconitum monticola Steinb., Stephania glabra (Roxb.) Miers, Thermopsis lanceolata R.Br., Cytisus ruthenicus Fisch. ex Wol., Lobelia inflata L., Strychnos nux-vomica L., Glaucium flavum Crantz., Vinca rosea L., Taxus brevifolia Nutt. Исследование проводилось с использованием информационно-поисковых (Scholar Google) и библиотечных баз данных (eLibrary, CyberLeninka).
Результаты исследования и их обсуждение
Доказательством того, что в растениях есть алкалоиды, служат положительные качественные реакции на исследуемое биологически активное вещество. Для качественного анализа используют общие и частные качественные реакции на алкалоиды [5]. Общие качественные реакции представлены реакциями осаждения с использованием различных химических веществ – йода и его растворов, реактива Драгендорфа, реактива Майера, реактива Бертрана, реактива Шейблера, реактива Зонненштейна, раствора кислоты пикриновой и раствора таннина. Реакции окрашивания (частные качественные реакции) многочисленны. В качестве реагентов используют концентрированную кислоту серную или азотную (оранжево-красное или красно-бурое окрашивание берберина соответственно), раствор пероксида водорода (фиолетовое окрашивание берберина), раствор калия бихромата и концентрированную кислоту серную (красно-фиолетовое окрашивание стрихнина), раствор калия бихромата и концентрированную кислоту азотную (оранжево-красное окрашивание бруцина), реактивы Эрдмана, Марки, Фреде, которые имеют различную окраску в зависимости от строения алкалоида. Кроме того, существуют групповые качественные реакции: мурексидная проба на пуриновые алкалоиды, реакция Витали – Морена на тропановые алкалоиды и другие. Эти реакции позволяют выявить у лекарственных растений целую группу алкалоидов или какой-либо определенный представитель, который в дальнейшем может послужить активным компонентом будущего лекарственного средства. В этом заключается первый этап создания лекарственного растительного препарата на основе алкалоида.
Второй этап подразумевает собой количественное определение данного биологически активного вещества. Сначала необходимо извлечь сумму алкалоидов из лекарственного растительного сырья. Для этого применяют такой метод, как экстракцию водой или спиртом, подкисленными винной, уксусной или хлороводородной кислотой. Перейдя в форму оснований, алкалоиды могут экстрагироваться органическими растворителями. При этом остальные ненужные сопутствующие вещества не связываются с ними, а остаются в исходном водном или спиртовом растворе. Затем органическую смесь алкалоидов подкисляют раствором соответствующей кислоты, вновь переводя алкалоид в солевую форму. Таким образом, выполняя данную операцию некоторое количество раз, можно добиться высокой степени очистки препарата.
В настоящее время на фармацевтических предприятиях все чаще отдают предпочтение иному методу выделения и очистки алкалоидов – ионному обмену. Этот метод представляет собой вполне простую технологическую схему, включающую в себя 5 основных процессов [6]. Как правило, индивидуальные алкалоиды извлекают с помощью нескольких видов катионитов (например, КУ-1, КУ-2, СБС-3). Данный метод применяют для производства цитизина из травы Thermopsis lanceolata R.Br. и многих других алкалоидов. Достоинствами ионного обмена являются относительная дешевизна материалов, простота оборудования и малая трудоемкость процесса. В других случаях используют метод электродиализа, совмещающего несколько этапов производства препаратов на основе алкалоидов – экстракцию, выделение и очистку. Но в связи с низкой эффективностью и сложностью эксплуатации оборудования на фармацевтическом производстве данный метод применяется крайне редко.
За извлечением и очисткой следует разделение суммы алкалоидов на индивидуальные компоненты, с которыми в дальнейшем будут иметь дело. Этот этап является крайне важным и достаточно сложным, так как в зависимости от того, насколько успешно пройдет разделение на конкретные алкалоиды, будет зависеть качество будущего лекарственного средства. Для выделения индивидуальных веществ на фармацевтическом производстве используют следующие основанные на физико-химических свойствах алкалоидов методы: вакуум-разгонку, дробную кристаллизацию, жидкостную экстракцию, сорбцию и избирательное элюирование (десорбцию) [7].
Последнее, что необходимо сделать, это провести собственно количественное определение алкалоида. Его проводят различными способами: гравиметрическим, титриметрическим и физико-химическим методами, включающими в себя фотоэлектроколориметрический метод (клубни с корнями Stephania glabra (Roxb.) Miers, трава Glaucium flavum Crantz.), спектрофотометрический метод (трава Thermopsis lanceolata R.Br.) и полярографический метод (семена Thermopsis lanceolata R.Br.).
Прежде чем выпустить новый лекарственный растительный препарат, необходимо провести тщательное изучение его производящих компонентов – лекарственного растительного сырья и содержащихся в нем биологически активных веществ – с целью определения фармакологической группы будущего лекарственного средства.
Алкалоид зонгорин, выделенный из различных видов Aconitum (A. Barbatum Pers., A. soongaricum Stapf., A. monticola Steinb., A. karakolicum Rapaics.), относящихся к семейству Ranunculaceae, обладает анксиолитической активностью [8]. По сравнению с другими лекарственными препаратами этой группы (ксанакс, феназепам), имеющими побочные эффекты, зонгорин не вызывает серьезных последствий и может применяться при лечении тревожных состояний. В этом заключаются перспективы использования данного алкалоида в качестве основного действующего компонента для лекарственного препарата. Результаты его разработок пока неизвестны.
Седативное действие проявляет алкалоид гиндарин, содержащийся в корнях Stephania glabra (Roxb.) Miers, принадлежащей семейству Menispermaceae. В качестве лекарственного препарата используют его производное – гиндарина гидрохлорид. Помимо оказания седативного действия он снижает артериальное давление, вызывает миорелаксацию и в больших дозах способен выступать в роли транквилизатора. Для производства пероральных препаратов гиндарина используют различные вспомогательные вещества [9]. Это необходимо для того, чтобы препарат более длительное время сохранял свою фармакологическую активность и не подвергался каким-либо химическим изменениям.
Растения семейства Fabaceae – Thermopsis lanceolata R.Br. и Cytisus ruthenicus Fisch. ex Wol. – применяются в качестве лекарственного растительного сырья для получения таких препаратов, как цититон и табекс. Их активным компонентом является алкалоид цитизин, который обладает стимулирующей и антитабачной активностью. Показаниями к применению цититона выступают асфиксия, шоковые, коллаптоидные состояния и ослабление дыхательной и сердечно-сосудистой деятельности при различных интоксикациях химическими веществами. Табекс назначают как средство для лечения никотиновой зависимости. Помимо цитизина схожей активностью обладает алкалоид лобелин, извлекаемый из Lobelia inflata L. (семейство Campanulaceae), который входит в состав препаратов лобелина гидрохлорид и лобесил. Кроме того, производные цитизина способны оказывать другие фармакологические свойства, не характерные для самого алкалоида – гиполипидемические, противовоспалительные, холинотропные, гемостатические, антиаритмические [10].
В медицинской практике используют такое химическое соединение, как стрихнина нитрат. Это производное алкалоида растения семейства Loganiaceae – Strychnos nux-vomica L. Он оказывает стимулирующее влияние на спинной мозг, возбуждает дыхательные и сосудодвигательные центры, усиливает функцию анализаторов, т.е. обладает адаптогенной, общетонизирующей активностью. Данный препарат назначают внутрь или внутривенно (инъекции). Также существуют другие лекарственные формы – настойка и экстракт чилибухи сухой, применяемые внутрь. Но оказывать свое терапевтическое действие алкалоид стрихнин может только в небольших концентрациях. Превышение допустимых концентраций приводит к серьезному отравлению, способному вызвать гибель организма.
Алкалоид глауцин, содержащийся в Glaucium flavum Crantz. семейства Papaveraceae, обладает противокашлевым, бронхолитическим и антиоксидантным действием. Проведенные исследования доказывают, что производное этого алкалоида (изомер дес-глауцин) имеет более выраженное антиоксидантное действие, чем исходный природный компонент [11]. Данных о его препаратах нет. Но препараты самого алкалоида глауцина существуют – это глаувент и глауцина гидрохлорид. В комбинации с другими алкалоидами (эфедрин, который содержится в различных видах рода Ephedra семейства Ephedraceae) и прочими соединениями глауцин входит в состав бронхотона, бронхолитина и бронхоцина.
За последние столетия медицина продвинулась далеко вперед. Сейчас человечеству известны способы профилактики и лечения многих заболеваний, ранее считавшихся неизлечимыми. Но и по сей день существуют болезни, справиться с которыми современным врачам непросто. Ярким примером этого являются онкологические заболевания. С каждым годом во всем мире наблюдается прирост пациентов с данным диагнозом, что обусловлено различными факторами. Для лечения доброкачественных и злокачественных опухолей используют химиотерапевтические, гормональные, противовирусные и многие другие препараты. Важнейшими из них являются растительные препараты, которые в меньшей степени, чем синтетические препараты, способны пагубно воздействовать на организм больного. Данная особенность является немаловажной и, несомненно, должна учитываться лечащим врачом. В лечении онкологических заболеваний применяют некоторые виды алкалоидов. Это винбластин, извлекаемый из Vinca rosea L., который относится к семейству Apocynaceae, и паклитаксел, выделяемый из коры Taxus brevifolia Nutt. семействаTaxaceae [12]. Доказано, что сумма алкалоидов A. baicalense Turcz. exRapaics, настойка и настой, обуславливают противоопухолевое и противометастатическое действие [13].
Заключение
Результаты, полученные в ходе исследования информационно-поисковых и библиотечных баз данных исследовательской литературы, показали, что алкалоиды способны оказывать множество различных фармакотерапевтических эффектов. Они могут влиять на различные системы органов и протекающие в человеческом организме процессы. Препараты алкалоидов оказывают действие на сердечно-сосудистую и центральную нервную системы, периферические нейромедиаторные процессы и афферентные нервные окончания. Вероятно, такое богатство терапевтических действий обусловлено сложным и разнообразным химическим строением данных биологически активных веществ. Кроме того, были рассмотрены основы производства лекарственных препаратов алкалоидов. Они имеют свои особенности в зависимости от того, на основе какого представителя хотят произвести/изготовить лекарственное средство. Проанализированные исследования и клинические испытания позволяют прийти к выводу, что ученым известно еще не так много об этой группе веществ. Обладая столь широким спектром терапевтического действия, алкалоиды способны стать действующими веществами лекарственных препаратов многих фармакологических групп. Таким образом, использование данных биологически активных веществ является перспективным в современной медицине.
Источник