Пептиды как лекарственные вещества биохимия

Пептиды как лекарственные вещества биохимия

Цель исследования – изучение преимуществ и недостатков пептидных препаратов, их применения, путей введения, традиционных и новых возможностей в разработке пептидных препаратов.

Материалы и методы: Повествовательный обзор, основанный на поисках литературы в текстовой базе данных медицинских и биологических публикаций PubMed, а также в российской научной электронной библиотеке eLIBRARY до июня 2019 года без ограничений по срокам. Поиск включал такие термины, как «пептиды», «пептидная терапия», «пептидные технологии».

Введение

На сегодняшний день известно более 7000 встречающихся в природе пептидов, многие из которых выполняют важные функции в организме, включая действия в качестве гормонов, нейротрансмиттеров, факторов роста, лигандов ионных каналов или противоинфекционных средств [1]. Пептиды являются селективными сигнальными молекулами, которые связываются со специфическими поверхностными рецепторами клеток, такими как G-белок-связанные рецепторы (GPCR) или ионными каналами, запуская тем самым внутриклеточные реакции. Учитывая их привлекательный фармакологический профиль и другие свойства, такие как безопасность, хорошая переносимость и эффективность, пептиды представляют собой оптимальную основу для разработки новых терапевтических средств. Кроме того, получение пептидов связано с более низкой сложностью производства по сравнению с биофармацевтическими препаратами на основе белков и, следовательно, связанно с более низкими расходами. Однако встречающиеся в природе пептиды часто не подходят для использования в качестве терапевтических средств, так как они имеют ряд недостатков, включая химическую и физическую нестабильность, а также короткий период полураспада в циркулирующей плазме крови. Некоторые из этих недостатков могут быть успешно устранены с помощью методов традиционной конструкции и ряда других разрабатываемых в настоящее время технологий. К таким технологиям относятся многофункциональные и проникающие в клетку пептиды, а также конъюгаты пептидных лекарственных [2,3].

Основная часть

Рынок пептидных препаратов

За последнее десятилетие пептиды нашли широкое применение в медицине и биотехнологии. В настоящее время существует более 60 утвержденных управлением по контролю за продуктами и лекарствами США (FDA) пептидов на рынке, и эта цифра, как ожидается, значительно вырастет, так как приблизительно 140 пептидных препаратов в настоящее время уже проходят клинические испытания, а доклинические — более 500 [4].

Применение пептидов

Основными заболеваниями, при которых в настоящее время используются и активно изучаются пептидные препараты, являются метаболические и онкологические заболевания. Заболевания из первой группы включают в себя ожирение и сахарный диабет 2 типа, характеризующиеся в последнее время эпидемическим ростом, заболевания второй группы характеризуются ростом смертности и необходимости замены химиотерапии, а также поддерживающей терапии. Примером пептидных препаратов для лечения сахарного диабета 2 типа (СД2) является новый класс пептидов — агонистов глюкагоноподобного пептида-1 (GLP-1) [5].

Помимо перечисленных заболеваний в последнее время разрабатываются пептидные препараты для лечения редких заболеваний, например, тедуглутид — агонист рецептора GLP-2, используемый для лечения синдрома короткой кишки, а также пасиреотид — агонист соматостатиновых рецепторов, используемый для лечения синдрома Кушинга. Кроме того, рассматривается возможность применения пептидов при заболеваниях инфекционного и воспалительного характера, при этом несколько пептидов уже проходит клинические испытания [6].

Помимо применения пептидов в качестве лекарственных средств, возможно их использование в качестве биомаркеров с диагностической целью. Наконец, пептиды также нашли применение в качестве вакцин [7].

Пути введения пептидов в организм

В настоящее время большинство пептидных лекарств вводят парентеральным путем, тем не менее, разрабатываются альтернативные формы введения, включая пероральный, интраназальный, и трансдермальный пути, в соответствии с развитием технологий. Одним из примеров альтернативных путей введения пептидов является препарат мидазол, с трансбукальным способом введения. В настоящее время разрабатываются системы трансбуккальной доставки, в которых используются гликонаночастицы золота [8]. Другие разрабатываемые системы могут обеспечить пероральную доставку пептидов, непосредственно экспрессируемых в желудочно-кишечном тракте.

Читайте также:  Аптечка для первой помощи при вич

Использование альтернативных форм введения может также обеспечить более широкое использование пептидной терапии при других состояниях, таких как воспаление, где местное введение пептидов может стать эффективным методом лечения [9].

Традиционные технологии конструирования пептидов

С целью избавления от таких недостатков применения природных пептидов как короткий период полувыведения и плохие физико-химические свойства, с которыми связана агрегация и плоха растворимость пептидов, используют ряд технологий

Вначале проводится определение аминокислотной структуры пептида и выявление в ней константных участков и участков возможной замены без изменения свойств. Данный анализ возможно осуществить, например, с помощью аланиновых замен отдельных аминокислот с последующим изучением полученного пептида. Важным в этом процессе, особенно когда необходимо получение жидких лекарственных форм, является определения химически лабильных аминокислот, подверженных таким процессам как изомеризация, гликозилирование или окисление, что является нежелательным [10].

В дальнейшем возможно ограничение ферментативного расщепления пептида путем идентификации возможных сайтов молекулярного расщепления с последующей заменой соответствующих аминокислот. Защита от ферментативного расщепления также может быть достигнута путем усиления вторичной структуры пептидов. Этот подход включает в себя вставку зонда, определяющего новую структуру, вставку лактамных мостиков, сшивание или клипирование пептидных последовательностей, а также циклизацию пептидов. Полиэтиленгликольилирование было использовано для ограничения глобулярной фильтрации и тем самым увеличения периода полувыведения пептидов из плазмы крови. К другим способам стабилизации пептидов относится связывание их с циркулирующим белком альбумином, в качестве носителя, для продления периода полураспада, что приводит к появлению пептидных препаратов пролонгированного действия, которые можно вводить до одного раза в неделю [11].

С целью улучшения физико-химических свойств пептидов, в частности уменьшения агрегации, производят разрушение гидрофобных участков в структуре пептида, что может быть достигнуто с помощью замены или N-метилирования определенных аминокислот. Для улучшения растворимости определенного пептидного препарата, изменяется распределение его зарядов, с помощью вставок или замены аминокислот что приводит к изменению изоэлектрической точки пептида и его стабилизации при рН желаемой рецептуры конечного продукта. Физико-химические свойства пептидов также могут быть улучшены путем введения стабилизирующих структур, таких как α-спираль или лактамные мостики [12].

Считается что пептидные препараты второго поколения, оптимизированные для терапевтического использования с помощью перечисленных технологий, оказались более удобными для применения. Дальнейшее развитие пептидной терапии связывают с быстрым появлением и дальнейшей миниатюризацией специальных устройств, насосов и систем обратной связи с сенсорами, и автоматизированным управлением, что позволило бы осуществить умную доставку пептидов [13].

Новые пептидные технологии

Существует огромное количество природных пептидов, некоторые из которых могут являться хорошей основой для создания новых пептидных препаратов. Большой интерес на сегодняшний день представляют исследования обмена веществ в кишечнике, так как он богат разнообразными микроорганизмами, изучение которых может привести к идентификации новых пептидов из фрагментов микробных белков, продуктов распада или сигнальных молекул. Продолжающиеся исследования микроорганизмов помогут значительно обогатить спектр имеющихся пептидных препаратов и тем самым повысить возможности для пептидной терапии в будущем [14].

Многофункциональные пептиды

Среди новых технологий в этой области — многофункциональные пептиды, имеющие более одного фармакологического действия, например, двойной или даже тройной агонизм. Применение данных препаратов дает возможность осуществления более индивидуализированного подхода к лечению пациентов. Современные многофункциональные пептиды, находятся в стадии разработки, включая антимикробные пептидные препараты, которые имеют дополнительные биологические функции, такие как иммуностимуляция или заживление ран. Двойные агонисты GLP 1-GCG обеспечивают большую потерю веса при избыточной массе тела пациентов с сахарным диабетом 2 типа по сравнению с чистым агонистом GLP-1, благодаря увеличению энергозатрат на основе GCG. Эти примеры иллюстрируют, как добавление дополнительного действия к установленному, может обеспечить более индивидуализированный лечебным подходам с повышенной эффективностью.

Читайте также:  Народные средства от комарова для улицы

Способы получения многофункциональных пептидов могут включать гибридизацию двух пептидов, связываемых вместе как модули либо напрямую, либо через линкер, либо с помощью образования химер, где вторая фармакологическая активность «спроектирована» для уже существующего пептидного остова [15].

Одной из проблем разработки многофункциональных пептидов является возможное несоответствие эффектов нового препарата, полученных in vitro и его воздействия in vivo, при этом в организме могут включится новые пути действия препарата, не связанные с запланированным эффектом. Кроме того, перевод результатов исследований препаратов, полученных от животных моделей на человека, также является проблемой. В целом сложность предсказывания эффектов многофункциональных пептидов в организме резко возрастает, что требует дальнейшего развития аналитического и экспериментального процесса в фармакологии.

Проникающие в клетку пептиды

Способы введения в организм лекарственных средств непрерывно совершенствуются. Возникают новые, более тонкие иглы и приборы, осуществляющие парентеральное введение лекарственных средств, разрабатываются пероральные системы со сложным механизмом высвобождения лекарственных средств, все это направленно на повышение эффективности терапии в результате повышения биодоступности лекарств в области нахождения их мишени.

Одной из важных проблем применения лекарственных средств на основе пептидов является плохая способность нативных пептидов переходить через клеточную мембрану, для воздействия на внутриклеточную мишень, что ранее ограничивало их терапевтическое применение.

В последние годы были изобретены «проникающие в клетку пептиды», использование которых повышает вероятность связывания пептидов с их внутриклеточными мишенями, так как при применении обычных лекарственных средств только часть пептидного препарата достигает цели [16].

Конъюгирование пептидов

К новым пептидным технологиям также можно отнести конъюгирование пептидов, например, с небольшими молекулами, олигорибонуклеотидами или антителами предоставляющее возможность для разработки новых пептидных терапевтических средств с улучшенной эффективностью и безопасностью. Например, в онкологии этот подход вызвал большой интерес, в результате чего более 20 пептидных конъюгатов проходят клинические испытания. Уже был продемонстрирован довольно удачный способ сопряжения пептидного агониста рецептора нейротензина 1 с радиоактивным лигандом для лечения рака поджелудочной железы, при этом первый компонент осуществляет прицельную доставку второго к органу мишени, создавая высокую местную концентрацию химиопрепарата в опухолевом очаге. Данный метод может помочь устранить главную проблему применения химиотерапии, уменьшая системные побочные эффекты и повышая эффективность применения препарата. В конъюгатах пептид-антитело часть антитела может играть роль целевого объекта, тогда как пептид является эффекторной частью [17].

Заключение

Дальнейшая разработка пептидных препаратов будет основываться на встречающихся в природе пептидах с применением традиционных пептидных технологий для улучшения их слабых мест, таких как как их химические и физические свойства, а также короткий период полураспада.

Также ожидается, что новые пептидные технологии, в том числе многофункциональные пептиды, пептиды, проникающие в клетки, и конъюгаты пептидных лекарственных средств, помогут расширить сферу применения пептидов в качестве терапевтических средств.

Пептиды обладают огромным потенциалом в качестве будущих препаратов для успешного решения многих медицинских проблем.

Источник

Пептиды как лекарственные вещества биохимия

Для исследования биологически активных веществ (БАВ), одним из наиболее удобных и быстрых методов является методика органотипического культивирования различных тканей [9, 10]. С применением этой методики был исследован ряд биорегуляторных пептидов, не обладающих видоспецифичностью, в но в то же время являющихся тканеспецифичными [6, 7]. Биорегуляторные пептиды в настоящее время уже используются в медицинской практике при многих заболеваниях нервной, иммунной, эндокринной систем, при патологии различных органов [3, 9]. Одним из научно обоснованных методов повышения продолжительности и качества жизни также является применение пептидных биорегуляторов. Пептидные биорегуляторные препараты в течение 1980–2015 гг. получили более 15 млн человек с различной патологией или в качестве средств профилактики, и в рандомизированном сравнительном исследовании установлено снижение темпа старения организма и смертности [9].

Читайте также:  Кальций для огурцов народные средства

В настоящее время фармацевтическая компания ООО «Самсон-Мед» производит субстанцию и лекарственный препарат «Сампрост® лиофилизат для приготовления раствора для внутримышечного введения 5 мг», который представляет собой комплекс биологически активных пептидов предстательной железы, а ФГУП «НПО «Микроген» производит лекарственный препарат «Простакор раствор для внутримышечного введения, 5 мг/мл». Препараты получают из предстательной железы крупного рогатого скота и используют для лечения простатита. «Тималин лиофилизат для приготовления раствора для внутримышечного введения» производства ООО «Самсон-Мед» и «Тактивин® раствор для подкожного введения 0,1 мг/мл» производства АО «Биомед» им. И.И. Мечникова являются иммуномодулирующими препаратами, их получают из тканей тимуса (вилочковой железы) крупного рогатого скота. Актуальной является проблема быстрого тестирования биологической активности и специфичности действия этих препаратов. Метод реактивации щелочной фосфатазы, ингибированной цистеином, а также метод «активного розеткообразования» тимоцитов морской свинки с эритроцитами кролика отражают каждый только один из многих биохимических процессов в организме. В то же время органотипическое культивирование сразу показывает воздействие пептидов на основные клеточные процессы – пролиферацию или апоптоз (программированная клеточная гибель) в соответствующей ткани. Т.е. при культивировании максимально воспроизводятся те условия, которые происходят в тканях организма под действием биорегуляторных пептидов, с учетом усиления клеточной регенерации. Таким образом, наиболее адекватным методом для быстрой количественной оценки направленности влияния исследуемых БАВ является органотипическое культивирование фрагментов тканей [1, 2, 7, 8]. Этот быстрый (в течение 3 суток) скрининговый метод позволяет проанализировать усиление или угнетение клеточной регенерации при воздействии того или иного биологически активного вещества, а также лекарственного препарата. К преимуществам этого метода относится также то, что в фрагментах культивируемой ткани сохраняется ее структурная организация.

Целью работы было исследование биологической активности и специфичности действия вышеуказанных препаратов с использованием метода органотипического культивирования различных тканей крыс.

Материалы и методы исследования

В опытах органотипического культивирования использованы половозрелые крысы линии Вистар, массой 250–300 г. Фрагменты селезенки либо предстательной железы самцов крыс величиной 1 мм3 размещались в чашках Петри (с полилизиновым покрытием дна). В питательную среду добавляли по 35 % среды Игла и раствора Хенкса, а также фетальную сыворотку быка, глюкозу (0,6 %), гентамицин (100ед/мл). Для определения эффективных концентраций лекарственные препараты добавляли в питательную среду экспериментальных чашек Петри в концентрациях 1–50 нг/мл. Эксплантаты тканей в чашках Петри культивировались в термостате с подачей 5 % СО2. при температуре 37 °С. В 1-е сутки культивирования происходило выселение пролиферирующих и мигрирующих клеток, образующих зону роста эксплантата. Оценку влияния препаратов на развитие эксплантатов производили морфометрическим методом, используя критерий индекса площади (ИП). ИП являлся отношение площади всего эксплантата, вместе с периферической зоной роста, к площади центральной зоны. В каждой чашке Петри считали ИП у каждого из 15–18 эксплантатов, складывали значения и делили на число эксплантатов, т.е. получали средний ИП для данной чашки. Контрольное значение ИП принимали за 100 %, все остальные ИП выражали в процентах к контролю. Достоверность различий сравниваемых средних значений ИП контрольных и опытных образцов оценивали с помощью t-критерия Стьюдента. Статистическую обработку полученных данных производили с использованием пакета программ «Microsoft Excel».

Результаты исследования и их обсуждение

В табл. 1 представлены результаты тестирования влияния ряда биорегуляторных пептидов, выделенных из предстательной железы крупного рогатого скота, на увеличение индекса площади ( %) эксплантатов предстательной железы линейных крыс Вистар. Так при культивировании фрагментов ткани выявлено, что лекарственный препарат «Сампрост® лиофилизат» серии 10214 в концентрациях 20 и 50 нг/мл приводил к статистически достоверному увеличению ИП эксплантатов на 22 ± 3 % (n = 21, p

Источник

Оцените статью