Основные фармакокинетические параметры лекарственных средств

10. Фармакокинетика и фармакодинамика – определение, разделы. Основные показатели фармакокинетики.

Фармакокинетика — это раздел фармакологии о всасывании, распределении в организме, депонировании, метаболизме и выведении веществ.

I. Пути введения лекарственных веществ – энтеральные (пероральный, сублингвальный, ректальный), парентеральные без нарушения целостности кожных покровов (ингаляционный, вагинальный) и все виды инъекций (подкожные, внутримышечные, внутривенные, внутриартериальные, внутриполостные, с введением в спинно-мозговой канал и др.). II. Всасывание лекарственных средств при разных путях введения в основном происходит за счет пассивной диффузии через мембраны клеток, путем фильтрации через поры мембран и пиноцитоза). Факторы, влияющие на всасывание: растворимость вещества в воде и липидах, полярность молекулы, величина молекулы, рН среды, лекарственная форма; биодоступность (количество неизмененного вещества в плазме крови относительно исходной дозы препарата), учитывающая потери вещества при всасывании из желудочно-кишечного тракта и при первом прохождении через печеночный барьер (биодоступность при внутривенном введении принимают за 100 %). Распределение лекарственных веществ в организме в большинстве случаев оказывается неравномерным и зависит от состояния биологических барьеров – стенки капилляров, клеточных мембран, плацентарного и гематоэнцефалического барьеров. Трудности преодоления последнего обусловлены его структурными особенностями: эндотелий капилляров мозга не имеет пор, в них отсутствует пиноцитоз, они покрыты глиальными элементами, выполняющими функцию дополнительной липидной мембраны (в ткань мозга легко проникают липофильные молекулы). Распределение лекарственных веществ зависит также от сродства последних к разным тканям и от интенсивности тканевого кровоснабжения; обратимое связывание лекарственных веществ с плазменными (преимущественно альбумином) и тканевыми белками, нуклеопротеидами и фосфолипидами способствует их депонированию. III. Биотрансформация (превращение) лекарственных веществ в организме (метаболическая трансформация, конъюгация или метаболическая трансформация) – превращение лекарственных веществ путем окисления (с помощью микросомальных ферментов печени при участии НАДФ, О2 и цитохрома Р-450), конъюгация – присоединение к лекарственному веществу или его метаболиту химических группировок и молекул эндогенных соединений (глюкуроновой и серной кислот, аминокислот, глютатиона, ацетильных и метильных групп); результат биотрансформации – образование более полярных и водорастворимых соединений, легко удаляющихся из организма. В процессе биотрансформации активность вещества обычно утрачивается, что лимитирует время его действия, а при заболеваниях печени или блокаде метаболизирующих ферментов продолжительность действия увеличивается (понятие об индукторах и ингибиторах микросомальных ферментов). IV. Выведение лекарственных веществ из организма в основном осуществляется с мочой и желчью: с мочой выводятся вещества путем фильтрации и активной кальциевой секреции; скорость их выведения зависит от скорости реабсорбции в канальцах за счет простой диффузии. Для процессов реабсорбции важное значение имеет рН мочи (в щелочной среде быстрее выводятся слабые кислоты, в кислой – слабые основания); скорость выведения почками характеризует почечный клиренс (показатель очищения определенного объема плазмы крови в единицу времени). При выделении с желчью лекарственные вещества покидают организм с экскрементами и могут подвергаться в кишечнике повторному всасыванию (кишечнопеченочная циркуляция). В удалении лекарственных веществ принимают участие и другие железы, включая молочные в период лактации (возможность попадания в организм грудного ребенка лекарств); одним из принятых фармакокинетических параметров является период полувыведения вещества (период полужизни Т1/2), отражающий время, в течение которого содержание вещества в плазме снижается на 50 %.

Основные показатели фармакокинетики

– Константа скорости абсорбции(Ка), характеризующая скорость их поступле­ния в организм.

– Константа скорости элиминации (Кel), характеризующая скорость их био­трансформации в организме.

– Константа скорости экскреции(Кex), характеризующая скорость их выведе­ния из организма (через легкие, кожу, пищеварительный и мочевой тракт).

– Период полуабсорбции (Т1/2, a) как время, необходимое для всасывания их поло­винной дозы из места введения в кровь (Т1/2, a = 0,693/Ка).

– Период полураспределения (Т1/2, a) как время, за которое их концентрация в крови достигает 50 % от равновесной между кровью и тканями.

– Период полувыведения(Т1/2) как время, за которое их концентрация в крови уменьшается наполовину (Т1/2 = 0,693/Кel).

– Кажущаяся начальная концентрация (С0), которая была бы достигнута в плаз­ме крови при их внутривенном введении и мгновенном распределении в орга­нах и тканях.

– Равновесная концентрация (Сss), устанавливаемая в плазме (сыворотке) крови при их поступлении в организм с постоянной скоростью (при прерывистом введении (приеме) через одинаковые промежутки времени в одинаковых до­зах выделяют максимальную (Сssmax) и минимальную (Сssmin) равновесные концентрации).

– Объем распределения (Vd) как условный объем жидкости, в котором необхо­димо растворить поступившую в организм их дозу (D) для получения концен­трации, равная кажущейся начальной (С0).

– Общий (Clt), почечный (Clr) и внепочечный (Cler) клиренсы, характеризую­щие скорость освобождения от них организма и, соответственно, выведение их с мочой и другими путями (прежде всего с желчью) (Clt = Clr + Cler).

– Площадь под кривой «концентрация-время» (AUC), связанная с их другими фа­рмакокинетическими характеристиками (объемом распределения, общим клиренсом), при их линейной кинетике в организме величина AUC пропор­циональна дозе, попавшей в системный кровоток.

– Абсолютная биодоступность (f) как часть дозы, достигшая системного крово­тока после внесосудистого введения (%).

Показателем элиминации лекарственного препарата является клиренс (мл/мин). Выделяют общий, почечный и печеночный клиренс. Общий клиренс есть сумма по­чечного и печеночного клиренсов и определяется как объем плазмы крови, который очищается от лекарственного препарата за единицу времени. Клиренс используется для расчета дозы лекарственного препарата, необходимой для поддержания его рав­новесной концентрации (поддерживающей дозы) в крови. Равновесная концентрация устанавливается, когда количество абсорбирующегося и количество вводимого пре­парата равны друг другу.

В изучении фармакокинетики лекарственных препаратов важное место занимает математическое моделирование.

Существует много математических методов и моделей, от простейших одномер­ных до разного уровня сложности многомерных.

Использование математического моделирования позволяет в деталях с выведе­нием характерных констант исследовать фармакокинетику лекарственных препа­ратов, как по времени, так и пространству (по органам и тканям).

Фармакодинамика — раздел, изучающий биологические эффекты веществ, их локализацию и механизм действия.

Основные Положения Фармакодинамики

I. Виды фармакологического действия лекарств (местное, резорбтивное, прямое и косвенное, рефлекторное, обратимое, необратимое, преимущественное, избирательное, специфическое действие). Во всех случаях лекарственное вещество взаимодействует с определенными биохимическими субстратами; активные группировки макромолекулярных субстратов, взаимодействующих с веществами, получили название рецепторов, а рецепторы, взаимодействие с которыми обеспечивает основное действие вещества, называются специфическими. Сродство вещества к рецептору, приводящее к образованию с ним комплекса, обозначается термином «аффинитет»; способность вещества при взаимодействии с рецептором вызывать тот или иной эффект называется внутренней активностью; вещество, при взаимодействии с рецептором вызывающее биологический эффект, называется агонистом (они и есть внутренне активные); агонизм может быть полным (вещество вызывает максимальный эффект) и частичным (парциальным). Вещества, при взаимодействии с рецептором не вызывающие эффекта, но устраняющие эффект агониста, называются антагонистами. II. Типовые механизмы действия лекарственных веществ (миметическое, литическое, аллостерическое, изменение проницаемости мембран, освобождение метаболита от связи с белками и др.). III. Фармакологические эффекты – прямые и косвенные. IV. Виды фармакотерапевтического действия (этиотропное, патогенетическое, симптоматическое, главное и побочное).

Механизмы действия лекарственных средств.

Подавляющее большинство лекарственных средств оказывает лечебное действие путем изменения деятельности физиологических систем клеток, которые вырабатывались у организма в процессе эволюции. Под влиянием лекарственного вещества в организме, как правило, не возникает новый тип деятельности клеток, лишь изменяется скорость протекания различных естественных процессов. Торможение или возбуждение физиологических процессов приводит к снижению или усилению соответствующих функций тканей организма.

Лекарственные средства могут действовать на специфические рецепторы, ферменты, мембраны клеток или прямо взаимодействовать с веществами клеток. Подробно механизмы действия лекарственных веществ изучаются в курсе общей или экспериментальной фармакологии. Ниже мы приводим лишь некоторые примеры основных механизмов действия лекарственных средств.

Действие на специфические рецепторы. Рецепторы — макромолекулярные структуры, избирательно чувствительные к определенным химическим соединениям. Взаимодействие химических веществ с рецептором приводит к возникновению биохимических и физиологических изменений в организме, которые выражаются в том или ином клиническом эффекте.

Препараты, прямо возбуждающие или повышающие функциональную активность рецепторов, называют агонистами, а вещества, препятствующие действию специфических агонистов, — антагонистами. Антагонизм может быть конкурентным и неконкурентным. В первом случае лекарственное вещество конкурирует с естественным регулятором (медиатором) за места связывания в специфических рецепторах. Блокада рецептора, вызванная конкурентным антагонистом, может быть устранена большими дозами вещества-агониста или естественного медиатора.

Разнообразные рецепторы разделяют по чувствительности к естественным медиаторам и их антагонистам. Например, чувствительные к ацетилхолину рецепторы называют холинэргическими, чувствительные к адреналину — адренергическими. По чувствительности к мускарину и никотину холинергические рецепторы подразделяются на мускариночувствительные (м-холинорецепторы) и никотиночувствительные (н-холинорецепторы). Н-холинорецепторы неоднородны. Установлено, что их отличие заключается в чувствительности к различным веществам. Выделяют н-холинорецепторы, находящиеся в ганглиях автономной нервной системы, и н-холинорецепторы поперечнополосатой мускулатуры. Известны различные подтипы адренергических рецепторов, обозначаемые греческими буквами α12, β1, β2.

Выделяют также H1— и Н2-гистаминовые, допаминовые, серотониновые, опиоидные и другие рецепторы.

Влияние на активность ферментов. Некоторые лекарственные средства повышают или угнетают активность специфических ферментов. Например, физостигмин и неостигмин снижают активность холинэстеразы, разрушающей ацетилхолин, и дают эффекты, характерные для возбуждения парасимпатической нервной системы. Ингибиторы моноаминоксидазы (ипразид, ниаламид), препятствующие разрушению адреналина, усиливают активность симпатической нервной системы. Фенобарбитал и зиксорин, повышая активность глюкуронилтрансферазы печени, снижают уровень билирубина в крови.

Физико-химическое действие на мембраны клеток. Деятельность клеток нервной и мышечной систем зависит от потоков ионов, определяющих трансмембранный электрический потенциал. Некоторые лекарственные средства изменяют транспорт ионов.

Так действуют антиаритмические, противосудорожные препараты, средства для общего наркоза.

Прямое химическое взаимодействие. Лекарственные средства могут непосредственно взаимодействовать с небольшими молекулами или ионами внутри клеток. Например, этилендиаминтетрауксусная кислота (ЭДТА) прочно связывает ионы свинца. Принцип прямого химического взаимодействия лежит в основе применения многих антидотов при отравлениях химическими веществами. Другим примером может служить нейтрализация соляной кислоты антацидными средствами.

Читайте также:  Руководство по оказанию первой помощи при несчастных случаях связанных с перевозкой опасных грузов

Является важным фармакодинамическим показателем. Обычно этот показатель представляет собой не простое арифметическое отношение и может графически выражаться по-разному: линейно, изогнутой вверх либо вниз кривой, сигмоидальной линией.

Каждое лекарство обладает рядом желательных и нежелательных свойств. Чаще всего при увеличении дозы лекарства до определенного предела желаемый эффект возрастает, но при этом могут возникать нежелательные эффекты. Лекарство может иметь не одну, а несколько кривых отношения «доза-эффект» для его различных сторон действия. Отношение доз лекарства, при которых вызывается нежелательный или желаемый эффект, используют для характеристики границы безопасности или терапевтического индекса препарата. Терапевтический индекс препарата можно рассчитывать по соотношению его концентраций в плазме крови, вызывающих нежелательные (побочные) эффекты, и концентраций, оказывающих терапевтическое действие, что более точно может характеризовать соотношение эффективности и риска применения данного лекарства.

Методы для изучения фармакодинамики должны обладать рядом важных свойств:

а) высокой чувствительностью — способностью выявлять большую часть тех отклонений от исходного состояния, на которое пытаются воздействовать, а также оценивать положительные изменения в организме.

б) высокой специфичностью — способностью относительно редко давать «ложноположительные» результаты.

в) высокой воспроизводимостью — способностью данным методом стабильно отображать характеристики состояния больных при повторных исследованиях в одинаковых условиях у одних и тех же больных при отсутствии какой-либо динамики в состоянии этих больных по другим клиническим данным.

Источник

2. Основные параметры фармакокинетики и их клиническая интерпретация.

Константа скорости абсорбции /всасывания/.

Этот параметр характеризует скорость поступления препарата из места введения в системный кровоток при внесосудистом способе введения /обозначение — К01, единица измерения — 4 -1 или мин -1 /.

Данный показатель характеризует степень всасывания ЛС в ЖКТ и поступления его в систему воротной вены. Выражается в процентах. Поскольку способ преодоления энтерогематического барьера для ЛС различен (пассивная диффузия, фильтрация, активный транспорт и т.д.), а на абсорбцию могут оказывать влияние и другие факторы (физико-химические свойства ЛС, вид лекарственной формы и технология ее изготовления, состояние кровотока ЖКТ, его тонуса, активность ферментов, параллельный прием пищи и т.д.), ЛС в систему воротной вены попадают с различной скоростью и степенью. Одни ЛС абсорбируются в ЖКТ достаточно полно (н-р, пропранолол — 95-100%), что позволяет рассчитывать на максимум их резорбтивного действия даже после перорального применения. Другие ЛС, напротив, практически не всасываются в ЖКТ (фталазол, антациды (альмагель, гастал), коллоидный субцитрат висмута и др.), что дает основание к их использованию для лечения желудочно-кишечной патологии с минимальным риском появления нежелательных резорбтивных эффектов.

Однако, особой клинической ценности для практического врача данные показатели (в частности К01) не имеют, поскольку в конечном итоге фармакодинамическое действие ЛС зависит не только от полноты и скорости абсорбции в ЖКТ, а определяется их биодоступностью (см. ниже), тесно связанной с другими параметрами фармакокинетики.

Большей информативностью обладает другой показатель — пик или максимум концентрации ЛС — характеризующий время, через которое препарат не просто появляется в крови после абсорбции с места введения, а накапливается там в терапевтически значимой концентрации. Опираясь на данный показатель, врач получает возможность выбрать оптимальный способ введения ЛС с целью создания условий для проявления максимального терапевтического действия препарата через определенное время (в часах или минутах), продиктованное характером клинической ситуации.

Известно, например, что антиаритмические средства Iа класса (хинидин, новокаинамид, дизопирамид) способны накапливаться в пиковых концентрациях после перорального применения через 1-2 часа, что соответствует развитию через такое же время и их максимального терапевтического действия. Такая же закономерность характерна и для других групп ЛС, например, метилксантинов, антагонистов кальция, бензодиазепиновых транквилизаторов и др.

Связь ЛС с белками плазмы.

Обычно этот показатель в справочной литературе выражается в процентах и отражает наиболее важную проблему, связанную с распределением ЛС после их всасывания и попадания в системный кровоток. Этот показатель имеет важное клинической значение для характеристики распределения ЛС в организме (между кровью и другими тканями и органами), выведения его почками и длительности действия.

Основными компонентами для связывания ЛС в плазме крови являются альбумины, глобулины, альфа-гликопротеин, липопротеины, другие белковые фракции. Известно, что в зависимости от применяемой дозы, степень связывания ЛС с белками изменяется, поскольку возможность белков плазмы связывать ЛС ограничена и зависит во многом от физико-химических свойств последних. В этой связи следует иметь ввиду, что данный показатель обычно рассчитывается для терапевтических доз ЛС.

Степень связывания ЛС с белками плазмы во многом зависит и от характера патологического процесса. Установлено, что снижение способности ЛС к связыванию наблюдается при почечной недостаточности, хроническом нефрите с нефротическим синдромом, заболеваниях печени, миеломной болезни. Наоборот, при болезни Крона и ревматоидном артрите ЛС связываются с белками в большей степени. Замечено, что у больных сахарным диабетом связывание ЛС с белками плазмы, как правило, не изменяется.

По степени связывания с белками крови ЛС условно можно разделить на две группы. Считается, что клинически значимой является способность ЛС связываться с белками на 80 и более процентов, поэтому данный показатель и является критерием этого деления.

Среди препаратов, которые способны связываться с белками плазмы более чем на 80% следует выделить ЛС из группы НПВС, препараты дигиталиса и глюкокортикостероидов, сульфаниламидов пролонгированного действия, антикоагулянтов кумаринового типа, антагонистов кальция, некоторые бета- адреноблокаторы (пропранолол, ацебутолол, алпренолол) и др.

Каковы же последствия связывания ЛС с белками плазмы?

1). Прежде всего данное явление приводит к сосредоточению ЛС внутри сосудистого русла и затруднению их проникновения в другие органы и ткани, что сопровождается снижением объема распределения лекарств (см. ниже). В свою очередь, это может уменьшить скорость наступления и выраженность фармакологического эффекта, тем более, что с точки зрения общей фармакологии белки, связывающие ЛС, представляют собой места временной потери фармакологической активности медикаментов. Необходимо помнить, что связь с белками, как правило, обратимая и через определенное время «потерянная» фармакологическая активность снова может появиться, создавая условия для материальной кумуляции, пролонгирования действия или передозировки ЛС. Это тем более реально, если с учетом указанных явлений, не производить корректировку доза применяемых лекарств.

2). Важным последствием рассматриваемой проблемы является и то, что ЛС, интенсивно связывающиеся с плазменными белками, плохо выделяются через почки, если механизм их экскреции клубочковая фильтрация. Необходимо отметить, что для ЛС, удаляемых из организма путем канальцевой секреции, процент связывания с белками не играет роли в отношении их экскреции.

3). Не менее важной в клиническом плане является и проблема возможной конкуренции лекарств за места связывания с белками крови. Так, например, кордарон может вытеснять из белковых комплексов дигоксин, а сульфаниламиды, особенно пролонгированные, способствуют высвобождению из связи с белками бутамиды, бензилпенициллина, дикумарина. Это может способствовать появлению в крови избыточных концентраций активных фармакологических субстанций и усилению их фармакодинамики.

Данный показатель представляют собой величину, характеризующую степень захвата препарата тканями из плазмы (сыворотки) крови (обозначение Vd, единица измерения — л, мл). В клинических условиях помогает определить способность ЛС к депонированию и кумуляции в организме, что может лежать в основе передозировки и появления токсических эффектов.

Этот показатель является условным и обозначает тот объем биологических жидкостей организма, в котором должно было бы равномерно распределиться введенное в кровь количество вещества, чтобы получилась концентрация, найденная в плазме крови. Vdопределяют по формуле:

где Д- количество введенного вещества /мг/, а С — концентрация вещества в плазме /мг/л.

Из этой формулы можно получить другую:

по которой в клинических условиях определяют величину нагрузочной дозы, требуемой для достижения необходимой концентрации препарата в крови. На практике используют также и показатель удельного объема распределения (обозначение — Vd, единица измерения — л . кг -1 ). Его определяют по формуле:

где G- масса тела пациента /кг/.

Чем больше dприближается в цифровом выражении /0,04/л/кг/ к объему плазмы /4%/, тем в большей степени введенное ЛС остается в крови и не проникает за пределы сосудистой системы. Еслиdприближается к значению 0,2 л/кг, то это говорит о том, что ЛС распределяется в основном во внеклеточной жидкости, составляющей, как известно, 20% массы тела. И последнее, чем большеVdпревышает истинное количество жидкости в организме, тем в большей степени ЛС депонируется в тканях. Например,Vdкордарона равен 300 л, что проявляется выраженной способностью препарата к депонированию в тканях и кумуляции. Период полуэлиминации кордарона в связи с этим растягивается до 30-45 суток. Все эти особенности фармакокинетики препарата используются на практике при построении схемы его применения и дозирования.

Следует учитывать и то, что Vd- величина приблизительная, поскольку прежде чем выяснить концентрацию ЛС в плазме, необходимо выждать определенное время, за которое данное ЛС распределиться в организме. Однако за этот срок часть ЛС может выделиться из организма и подвергнуться биотрансформации, что обусловит снижение его концентрации, а значит увеличитVd. Такие потери учесть порою очень трудно.

Процесс метаболизма или биологической трансформации ЛС происходит, главным образом, в печени с помощью ферментов гладкого эндоплазматического ретикулума гепатоцитов. Эта группа ферментов, в силу своей субстратной неспецифичности, получила название оксидаз смешанного многоцелевого действия. Лекарственно-метаболические реакции кроме печени протекают в почках, кишечнике, крови, легких и плаценте, однако основная роль принадлежит печеночным ферментным ансамблям.

Главная цель метаболических процессов заключается в превращении ЛС в более легко выводимые из организма полярные соединения через водные среды (моча, слюна, пот, фекалии и др.) и поэтому липофильные лекарственные молекулы в большей степени подвергаются ферментной модификации, чем гидрофильные, которые из организма выделяются в основном в неизмененном виде.

Одни ЛС подвергаются химическим изменениям в реакциях окисления, восстановления или гидролиза с образованием метаболитов, другие — коньюгируются с остатками серной, уксусной или глюкуроновой кислот, укрупняясь в размерах и превращаясь в коньюгаты. Возможна последовательная смена одного процесса другим, однако итог этих модификаций один — появление более легко удаляемых из организма гидрофильных соединений.

Читайте также:  Народные средства от гематом мягких тканей

Основным последствием биологической трансформации ЛС является снижение или повышение их биологической активности. В этой связи следует рассмотреть несколько клинически важных проблем лекарственного метаболизма.

а) Фармакологически активные метаболиты /ФАМ/

ЛС, подвергаясь метаболизму, в основном распдаются на фармакологически (биологически) неактивные субстанции. Однако некоторые ЛС, напротив, могут превращаться в еще более активные соединения. Клиническое значение при этом имеют те ФАМ, которые по своей активности равны или превышают исходное лекарственное вещество.

Известно большое количество ЛС, которые метаболизируются в организме с образованием ФАМ. К ним относятся аминазин, варфарин, карбамазепин, клонидин, новокаинамид, теофиллин и многие другие. В клиническом плане проблема ФАМ представляет интерес в нескольких направлениях.

Во-первых, этот учет образования тем или иным ЛС ФАМ с целью коррекции доз препаратов при проведении длительной фармакотерапии. В связи с тем, что ФАМ обладает обычно фармакологическим действием того же характера, что и исходный препарат, а также учитывая их более длительную элиминацию из организма, степень фармакологических эффектов таких препаратов за счет явления материальной кумуляции может значительно возрастать. Это дает основание для плавного снижения доз используемых ЛС через 1-2 месяца после начала длительного лечения. Одним из примеров может служить проведение ФТ с помощью неселективного бета- адреноблокатора пропранолола, когда несоблюдение вышеуказанных закономерностей может сопровождаться выраженной брадикардией или остановкой сердца.

Во вторых, это использование отдельных ФАМ в качестве ЛС, причем такие ЛС могут иметь некоторые преимущества в сравнении со своими предшественниками. Так, N-ацетилпрокаинамид, активный метаболит прокаинамида (новокаинамид), можно назначать всего 2 раза в сутки без какого-либо риска развития отрицательного инотропного действия и синдрома красной волчанки, характерного для прокаинамида. Как самостоятельное антиангинальное средство с пролонгированным эффектом используется в лечении ИБС фармакологически активный метаболит изосорбид-динитрата (нитросорбит) — изосорбид — 5 — мононитрат (мономак, моникор, опикард и др.). Рядом преимуществ по сравнению со своими предшественниками обладают ФАМ диазепама — оксазепам (тазепам) и имипрамина -дезипрамин.

В-третьих, это использование пролекарств, что является одним из направлений современной ФТ. С помощью этого направления удается повысить безопасность фармакологической коррекции и создать стойкий и пролонгированный лечебный эффект. Пролекарство — это химическое соединение, которое для проявления своей фармакологической активности обязательно должно пройти путь метаболической трансформации, в результате которой и образуются ФАМ, непосредственно вызывающие желаемые фармакодинамические эффекты.

К пролекарствам относят фталазол (активная субстанция норсульфазол фторафур (фторурацил), метлдопа (3-метилнорадреналин), энаприл (эналоприлат) и многие другие ингибиторы ангиотензин -превращающего фермента (н-р, рамиприл, периндоприл, беназеприл).

Лекарства, которые подвергаются в организме интенсивному метаболизму могут при «первичном прохождении» через печень после абсорбции в ЖКТ в значительной мере подвергаются метаболической трансформации. Такой вид биотрансформации часто называют пресистемным метаболизмом, степень которого во многом зависит от скорости кровотока в печени.

Некоторые ЛС могут в значительной степени подвергаться пресистемному метаболизму. К таким препаратам относят ацетилсалициловую кислоту, верапамил, алпренолол, лидокаин, метоклопрамид, метапролол, нитроглицерин, пентазоцин, бупренорфин, пропранолол, этмозин и многие другие.

При высоких концентрациях препарата в печени возможно насыщение печеночных ферментов, в результате чего при приеме ЛС в больших дозах может произойти резкое и непропорциональное увеличение их биодоступности. Это явление характерно и изучено для алпренолола и пропранолола.

В клиническом отношении наибольшее значение имеет проблема, связанная с коррекцией низкой биодоступности ЛС, которые подвергаются в организме интенсивному пресистемному метаболизму (подробнее об этом в разделе о биодоступности).

в) Индукция и ингибирование ферментов лекарственного метаболизма

Известно, что около 300 лекарственных препаратов способны вызывать повышение (индукцию) активности ферментов лекарственного метаболизма. Различают быструю или одномоментную индукцию, связанную с увеличением активности существующих молекул ферментов, и медленную — наблюдаемую при увеличении синтеза новых молекул ферментов.

Ранее считали, что повышение активности ферментов лекарственного метаболизма может произойти только в результате многодневного назначения ЛС, однако сейчас известно, что индукция ферментов может наблюдаться и после однократного применения ЛС через несколько часов.

Существует термин и аутоиндукции, под которой понимают процесс стимуляции некоторыми ЛС собственного метаболизма. Такое явление характерно для нитратов.

В результате индукции уменьшается величина периода полуэлиминации самого лекарства — индуктора или другого ЛС, который назначался больному одновременно, если для элиминации этого препарата велик вклад метаболизма индуцируемого фермента. Клинически это сопровождается снижением выраженности фармакодинамических эффектов лекарств-участников комбинации или развитием лекарственной толерантности.

Среди ЛС наиболее активными и наиболее изученными индукторами метаболических ферментов являются фенобарбитал (и другие производные барбитуровой кислоты), рифампцицин и фенитоин. Такими же свойствами обладают диазепам, спиронолактон, карбамазепин, трициклические антидепрессанты (некоторые), мепробамат и другие ЛС.

Индукторы могут ускорять метаболизм и эндогенных субстратов, таких как билирубина, холестерина, витаминов Д и К, эстрогенов и кортикостероидов.

Под действием некоторых препаратов может происходить и обратное явление — снижение скорости метаболизма других ЛС — за счет их ингибирующего влияния на ферменты лекарственного метаболизма. Это может приводить к увеличению периода полуэлиминации, к росту стационарной концентрации веществ в крови и к повышению фармакологического эффекта.

Активными ингибиторами метаболизма лекарств являются толбутамид, циметидин, аллопуринол, изониазид, циклосерин, ПАСК, тетурам, пропранолол.

Этот эффект может усиливаться на фоне печеночной патологии, что необходимо учитывать при проведении ФТ (особенно комбинированной у больных с заболеваниями печени.

Проблема биодоступности (БД) начала изучаться примерно лет 30 назад, исходя из положения о том, что чтобы ЛС вызвало терапевтический эффект, оно должно всасываться с такой скоростью и в такой степени, чтобы создать соответствующую концентрацию в течении определенного периода времени.

БД выражается в процентах и характеризует степень, с которой ЛС всасывается с места введения в системный кровоток и накапливается там в терапевтически значимой концентрации, а также скорость, с которой этот процесс происходит.

Клиническая оценка параметра БД наиболее важна для ЛС с низкой широтой терапевтического действия (сердечные гликозиды, противоаритмические и противосудорожные средства, НПВС, антимикробные средства, гипогликемические препараты и т.д.), для ЛС с ярко выраженной зависимостью «дрза — эффект», а также ЛС с опасными токсическими побочными дозозависимыми эффектами.

На БД могут влиять многие факторы. Из них следует выделить физико-химическое состояние лекарственного вещества (липофильность), состав и количество вспомогательных веществ, вид лекарственной формы, особенности технологии производства препаратов, физиологические особенности организма (возраст, пол, вес, функции органов элиминации), процент абсорбции в ЖКТ, параллельный прием пищи, доза ЛС, путь его введения, характер метаболизма и элиминации из организма и многие другие.

Общепризнано, что изучение БД ЛС следует производить в процессе разработки новых ЛС и во время их производства (в порядке постоянного контроля качества), а также при сравнительной оценке одного и того же препарата, выпускаемого на разных производствах.

Поскольку параметр БД является интегральным показателем, характеризующим степень и скорость накопления терапевтических концентраций ЛС в крови, определяющих в конечном итоге их терапевтическую эффективность, в клиническом плане весьма существенна проблема создания таких концентраций и их поддержания в течение необходимого для лечения периода

Учитывая полифакторность зависимости терапевтически значимых концентраций многих ЛС (например, верапамил, теофиллин, лидокаин и др.), БД которых может колебаться, особенно в сторону снижения, врачам часто приходится решать задачи, связанные с поиском путей повышения БД тех или иных ЛС, что тесно сопряжено с проблемой повышения эффективности ФТ.

Можно выделить несколько путей, с помощью которых эту проблему в какой-то степени удается решить на практике. Например, БД ЛС для энтерального применения можно повысить с помощью изменения их лекарственной формы, поскольку известно, что данный параметр для одного и того же лекарства будет выше в случае использования ЛС в виде раствора, нежели суспензии, капсул или таблеток. Можно изменить путь введения ЛС, например, энтеральный на парентеральный и наоборот. Общеизвестно, что с помощью подъязычного применения нифедипина (10-20 мг) или каптоприла (25 мг) удается у многих больных снять кризовое течение артериальной гипертензии, а БД таблеток нитроглицерина или опиоидного анальгетика бупренорфина становится максимальной и клинически значимой лишь при всасывании из подъязычной области.

БД можно увеличить путем повышения разовой дозы ЛС в расчете на субстратное ингибирование микросомальных ферментов и снижение метаболической деградации активной лекарственной субстанции. Иногда БД лекарства удается повысить путем увеличения скорости его поступления в системный кровоток. Так поступают при проведении мероприятий по купированию приступа суправентрикулярной пароксизмальной тахикардии с помощью верапамила. Учитывая значительную способность препарата связываться с белками плазмы и подвергаться биотрансформации, его введение обычно осуществляется без разведения и с помощью болюса, что позволяет создавать условия для развития в первую очередь желаемой фармакодинамики.

Наконец, БД ЛС можно повышать путем регламентирования их приема с пищей (БД анаприналина, например, при применении во время или после еды в 1,6-2 раза выше, чем при его назначении до приема пищи [11] или с помощью метода хронофармакологии (известно, что теофиллин полнее абсорбируется в ЖКТ в утренние часы).

В процессе клинической интерпретации параметров фармакокинетики, наряду с БД, используется и понятие биоэквивалентность /БЭ/. Оно имеет клиническое, фармацевтическое и экономическое значение. Под БЭ понимают соответствие, применяемых в одинаковых лекарственных формах, родственных (фармакологически) препаратов по их клиническим эффектам. Степень клинической значимости данной проблемы во многом зависит от количества появляющихся на лекарственном рынке патентованных (коммерческих) названий одного и того же ЛС, т.е. определяется числом фармацевтических фирм, групп и компаний, занятых производством данного лекарства. Например, в настоящее время антагонист кальция дигидропиридинового ряда нифедипин имеет более 26 фирменных названий (адалат, коринфар, фенигидин, кордафен и т.д.). Клинические наблюдения показывают, что при применении таких препаратов часто возникают трудности при переходе с лечения одним ЛС на такое же, но имеющее другое фирменное название, в чем не малая роль принадлежит различиям в их БД. Наиболее значительные различия в БД ЛС через призму проблемы БЭ обнаружены у микрокапсулированных нитратов, дигоксина, хлорамфеникола, тетрациклина, римфампицина, гидрохлортиазида, теофиллина и у некоторых других.

Читайте также:  Полисорб при похмелье как быстро действует

К сожалению, клиническая практика не располагает большим объемом информации по проблеме сравнительной БД и БЭ родственных ЛС, родственных ЛС, однако то, что известно в этой области, позволяет значительно рационализировать ФТ. Например, известно, что для создания терапевтической концентрации нитроглицерина необходимо назначать пациентам со стенокардией напряжения не 3 /как сустак-форте/, а 4 таблетки сустонита-форте /Польша/.

Период полуэлиминации ЛС.

Данный параметр еще называют периодом полужизни или полусуществования ЛС /обозначение — Т50­, единица — ч, мин/. Характеризует время, за которое концентрация ЛС в плазме крови снижается в 2 раза как за счет метаболизма, так и выведения. Для разных ЛС Т50колеблется от нескольких минут до нескольких дней и может в широких пределах для одного и того же ЛС в зависимости от индивидуальных особенностей организма больного, пола, возраста, активности ферментных систем, сопутствующих заболеваний и т.д. Поэтому Т50обычно определяется для здорового человека среднего возраста при использовании терапевтических доз ЛС.

Практически за один Т50из организма выводится 50% ЛС, за два периода — 75%, а за три — 90%. Т50является функциейVdи клиренса ЛС, поэтому не служит точным показателем выведения препаратов.

Т50служит главным образом, для определения промежутка времени, необходимого для достижения равновесной концентрации ЛС в крови, что обычно равно 5-7 периодам его полувыведения. Чем короче Т50ЛС, тем скорее достигается равновесная концентрация, т.е. состояние, когда количество всасывающегося ЛС равно количеству выводимого, что и проявляется клиническими эффектами препарата.

Равновесная /стационарная/ концентрация ЛС в плазме крови

Как отмечено выше, равновесная концентрация ЛС /обозначение Сss, единица — мкг/л, кг/мл/ это концентрация, которая установится в плазме крови при поступлении препарата в организм с постоянной скоростью в случае введения или приема препарата через одинаковые промежутки времени и в одинаковых дозах. Используются также понятия максимальной и минимальной Сss. Существует определенный диапазон терапевтических концентраций ЛС в плазме, превышение которого может вызвать токсический эффект. Для многих ЛС этот диапазон установлен: дигоксин — 0,8 — 2 нг/мл, теофиллин — 10-20 нг/мл, новокаинамид — 4-10 нг/мл и т. д. Есть препараты с узким и широким диапазоном Сss. Последние более безопасны и их применение возможно и без обязательного контроля уровня концентрации в крови. Для препаратов с узким диапазоном, наоборот, такой контроль во многих случаях обязателен.

Следует учитывать и тот факт, что для получения одной и той же концентрации медикамента в плазме разным лицам могут назначаться неодинаковые дозы ЛС. Также может наблюдаться и вариабельность установления СssЛС у одного и того же пациента. Все это затрудняет определение терапевтической концентрации ЛС и создает трудности по ее клинической интерпретации.

Константа скорости элиминации.

Данный параметр характеризует скорость исчезновения /элиминации/ препарата из организма путем экскреции и биотрансформации /обозначение — Кэл, единица ч _1 , мин -1 /.

С помощью этого показателя можно рассчитывать коэффициент элиминации, который характеризует часть ЛС, находящуюся в данный момент в организме и элеминирующуюся в течение суток из организма. Коэффициент элиминации позволяет рассчитать дозу ЛС для поддерживающей терапии, если достигнут терапевтический эффект и при этом известно, какое количество медикамента находится в организме. Например, коэффициент элиминации дигитоксина равен 7%. Это значит, что если к моменту развития максимального эффекта в организме пациента находится 2 мг этого препарата, то достаточно вводить 7% от 2 мг, т.е. 0,15 мг препарата. С помощью Кэл можно определить и Т50ЛС по формуле:

Этот параметр характеризует скорость выведения ЛС с каким-либо экскретом — мочой, калом, слюной, молоком и т.д. /обозначение Кэ, Кех, единица — ч -1 , мин -1 /.

Данный параметр характеризует скорость «очищения» организма от ЛС, он условно соответствует той части Vd, которая очищается от препарата в единицу времени /обозначение — Сlt, единица — мл/мин, л/час/.

13. Почечный /ренальный/ клиренс

Параметр, характеризующий скорость очищения организма от ЛС путем его экскреции почками /обозначение — Сlr,Clr, единица — мл/мин, л/ч/. Величина Сl rсоответствует /условно/ той частиVd, которая очищается от препарата в единицу времени за счет выведения его с мочой.

где Кех, — константа скорости экскреции препарата с мочой.

Внепочечный /экстраренальный/ клиренс препарата

Данный параметр отражает скорость очищения организма от препарата другими путями, помимо выделения с мочой, в основном за счет биотрансформации ЛС и экскреции с мелью. Условно соответствует той части Vd, которая очищается от ЛС в единицу времени суммарно всеми путями элиминации, кроме экскреции почками. Обозначение -Cler,Clnr; единица — мл/мин, л/ч/.

Площадь под кривой «концентрация-время»

Синонимом этого параметра является площадь под фармакокинетической кривой /обозначение — АИС или S, единица — ммоль/мин/л -1 ; ммоль/ч/л -1 ; мкг/мин/л -1 и т.д./.

На графике в координатах «концентрация ЛС в плазме и время после введения препарата» АИС соответствует площади ограниченной фармакокинетической кривой, отражающей процесс концентрации ЛС во времени и осями координат.

Величина АИС связана с VdЛС и обратно пропорциональная общему клеренсу препарата /Clt/.

Часто на практике пользуются площадью не под всей кривой /от нуля до бесконечности по времени/, а площадью под частью кривой /от нуля до некоторого времени/. Этот параметр обозначают АИС t, например, АИС8, что означает время от 0 до 8 час.

Возможные направления практического использования параметров клинической фармакокинетики.

Таким образом, учет и использование параметров фармакокинетики позволяет правильно подойти к оценке процессов всасывания, распределения, метаболизма и выведения ЛС из организма, а также к рациональному выбору индивидуального дозового режима при клиническом применении уже известных или испытании новых ЛС, разрешить проблему лекарственной несовместимости, обеспечить эффективную и безопасную фармакотерапию пациентов, объяснить почему иногда введение ЛС оказывается малоэффективным или опасным.

Все это вполне реально и не только благодаря увеличению уровня знаний врачей в области клинической фармакокинетики и возрастанию их умений применять эти знания на практике. Еще большее значение для оптимизации современной ФТ может иметь организация и проведение клинико-фармакокинетических исследований у конкретных больных при осуществлении им фармакологического лечения. Такие исследования обычно проходят на стыке нескольких дисциплин и поэтому для их проведения необходимо участие специалистов разного плана: врачей-клиницистов, врачей-лаборантов, клинических фармакологов и фармацевтов, биохимиков, химиков-аналитиков, микробиологов, биофизиков, программистов и математиков.

Совместное обсуждение такими специалистами полученных результатов клинико-фармакокинетических исследований позволит правильно оценить их как с клинической, так и с фармакокинетической точек зрения, разработать на их основе методы оптимального и индивидуального назначения ЛС.

Больничная служба клинической фармакокинетики должна быть оснащена современной аппаратурой для проведения фармакокинетического анализа и статистической обработки полученных данных, что даст возможность осуществить их клиническую интерпретацию с высокой долей объективности.

Клинико-фармакокинетические исследования могут проводиться в нескольких направлениях. Одним из важных является изучение фармакокинетики новых ЛС, влияния различных факторов на поведение лекарств в организме и исследование биодоступности новых лекарственных форм.

Вторым направлением деятельности службы клинической фармакокинетики могут быть исследования индивидуальных особенностей фармакокинетики ЛС у больного с целью определения оптимальной схемы дозирования, исследования динамики уровня препарата в сопоставлении с динамикой эффекта, а также терапевтический мониторинг уровня ЛС в процессе курсового лечения с целью контроля и поддержания эффективного и безопасного уровня препарата.

Кроме того, служба клинической фармакокинетики может с успехом решать проблемы судебно-медицинского и клинико-токсикологического характера, включающие диагностику отравлений лекарствами, установление структуры препарата — токсина, определение уровня токсинов для прогноза и выбора тактики лечения и контроля за ходом дезинтоксикационных мероприятий.

Тема : «Клиническая фармакология антибронхообструктивных средств».

Понятие, основные причины и симптомы бронхообструктивного синдрома.

Бронхообструктивный синдром (БОС) — это патологическое состояние, которое характеризуется нарушением бронхиальной проходимости в результате функциональной или органической патологии. БОС обычно проявляется приступообразным кашлем, одышкой и приступами удушья.

Основными причинами БОС являются:

а) бронхоспазм — сужение просвета бронхов за счет повышения тонуса гладких мышц их стенок; по происхождению бронхоспазм может быть рефлекторным, аллергическим и медиаторным, аллергическим и медикаментозным;

б) воспалительный отек (клеточная инфильтрация) слизистой бронхов инфекционного, аллергического или гемоориалического (застой крови в малом круге кровообращения) происхождения;

в) нарушение мукоципларного транспорта (МЦТ), приводящее к накоплению в просвете бронхов вязного секрета (подробнее о МЦТ будет сказано ниже).

В этиологии БОС кроме того могут иметь место гиперпластические изменения стенок бронхов (утолщения фиброзного типа), трахеобронхиальная дискинезия и экспираторный (на выдохе) коллапс мелких бронхов вследствие снижения их эластичности на фоне энфиземы, а также многие другие прицессы и состояния (всего около 100!).

БОС наиболее часто встречается при бронхиальной астме (БА), хроническом бронхите, эмфиземе легких и пневмониях.

Принципы фармакотерапии при БОС.

Выделяют следующие принципы медикаментозного лечения БОС:

а). Воздействие на причинный фактор. При этом выделяют два принципиальных варианта когда:

возможности ограничены: например, при атонической БА- устранение контакта с аллергеном или гипосенсибилизация;

возможности реальны: например, устранение механической обтурации бронхов (опухоль, инородное тело и др.), устранение застойных явлений в легких на фоне сердечной недостаточности или проведение антибактериальной терапии ХОБ.

б). Воздействие на патогенез БОС: это основа леченияя больных с БОС, направленная на механизм развития БОС, позволяющая значительно улучшить бронхиальную проходимость.

Лекарственные средства, применяемые при БОС.

Источник

Оцените статью