Лекарственные травы содержащие флавоноиды

Флавоноиды и каротиноиды

1. КАРОТИНОИДЫ

О флавоноидах см. ниже →

Одними из самых поразительных по красоте и биологической активности природных пигментов являются каротиноиды. Это жирорастворимые соединения, синтезируемые растениями, водорослями, бактериями и грибами (Sandmann, 2001). Их исследование началось еще в 1831 году, когда Вакенродером был выделен из моркови в кристаллическом виде желтый пигмент β-каротин, а в 1837 году Берцелиусом были выделены желтые пигменты из осенних листьев и названы ксантофиллами. Через 100 лет в 1933 году было известно уже 15 различных каротиноидов, около 80 – в 1947 году и за последующие двадцать лет эта величина превысила 300. В настоящее время в группу каротиноидов входит около 700 пигментов. В природе эти вещества определяют цвет опадающих листьев, окраску цветов (нарциссы, ноготки) и плодов (цитрусовые, перец, томаты, морковь, тыква), насекомых (божья коровка), перьев птиц (фламинго, ибис, канарейка) и морских организмов (креветки, лосось). Эти пигменты обеспечивают различные цвета: от желтого до темно-красного, а в комплексе с белками могут давать зеленое и голубое окрашивание.

В растениях они являются вторичными метаболитами и подразделяются на две группы: окисленных ксантофиллов, таких как лютеин, зеаксантин, виолаксантин и каротиноидов-углеводородов, таких как β- и α- каротины и ликопин.

Среди известных растительных пигментов каротиноиды наиболее распространены и отличаются структурным разнообразием и широким спектром биологического действия. В высших растениях каротиноиды синтезируются и локализуются в клеточных пластидах, где они связаны в светочувствительные комплексы, участвуя в процессе фотосинтеза и защищая растения от оксидантного стресса, вызванного избыточным освещением.

Из 700 известных каротиноидов 40 постоянно присутствуют в пище человека, провитаминной (А) активностью у млекопитающих обладают только β-каротин, альфа-каротин и криптоксантины.

Каротиноиды принято считать одними из наиболее мощных улавливателей синглетного кислорода. Именно антиоксидантные свойства этих соединений во многом определяют их биологическую активность. Хотя каротиноиды присутствуют во многих традиционных продуктах питания, наиболее богатыми источниками для человека служат ярко окрашенные овощи, фрукты и соки, причем желто-оранжевые овощи и фрукты обеспечивают основную часть поступления β- и α-каротина, оранжевые фрукты являются источниками α-криптоксантина, темно-зеленые овощи – лютеина, перец – капсантина и капсорубина, а томат и продукты их переработки – ликопина Johnson, 2002.

По уровню накопления каротиноидов среди овощных культур лидируют шпинат, богатый лютеином и зеаксантином, а также представители рода Capsicum, содержащие в плодах капсантин и капсорубин.

Среди экзогенных факторов существенное влияние на накопление каротиноидов оказывает температура выращивания, интенсивность освещенности, длительность светового периода и использование удобрений. Так известно, что в тени содержание лютеина и β-каротина в растениях ниже, чем на свету, а летом выращенная листовая капуста имеет более высокие концентрации этих каротиноидов, чем при выращивании в зимний период. По мере роста содержание каротиноидов в листьях возрастает и снижается на стадии старения, то есть количество каротиноидов в растении зависит и от времени сбора урожая. Экспериментальные исследования подтверждают, что органическое фермерство обеспечивает наибольшее аккумулирование плодами сладкого перца красных и желтых пигментов (табл.2).

Благодаря своим антиоксидантным свойствам каротиноиды привлекают особое внимание в борьбе за предотвращение таких хронических заболеваний, как рак, сердечнососудистые заболевания, диабет и остеопороз.

Таблица 2. Содержание каротиноидов в плодах сладкого перца сорта Almuden в условиях использования органических удобрений, традиционной и интегрированной технологии (мг/кг сырой массы) (Perez-Lopez et al, 1999)

*красная фракция= капсорубин+капсантин и изомеры

Желтая фракция = β-каротин + β-криптоксантин + зеаксантин + виолаксантин

Важнейшей биологической функцией каротиноидов в организме человека является провитаминная (А) активность. Каротиноиды, обладающие такой активностью, 1) поддерживают дифференциацию здоровых эпителиальных клеток, 2) нормализуют репродуктивные функции и 3) зрение. Витамин А входит в состав зрительного пигмента родопсина, что объясняет важную роль в поддержании зрения β-каротина, α-каротина и криптоксантинов. В частности, недостаток витамина А в пище может приводить к развитию так называемой ≪куриной≫ слепоты, характеризующейся существенным снижением чувствительности сетчатки глаза в сумерках, а в тяжелых случаях к развитию так называемого ≪трубчатого≫ зрения≫, когда светочувствительные клетки периферической части сетчатки перестают работать. Лютеин и зеаксантин – два из 7 каротиноидов, обнаруженных в плазме крови, и это единственные каротиноиды сетчатки и хрусталика. В сетчатке лютеин и зеаксантин ответственны за желтую пигментацию и получили название пигменты желтого пятна. Этот участок занимает всего 2% от всей поверхности сетчатки и состоит исключительно из клеток колбочек, ответственных за цветное зрение. Предполагают, что пигменты желтого пятна участвуют в фотопротекции, и пониженное содержание лютеина и зеаксантина может быть связано с поражением сетчатки. Увеличение количества этих пигментов может быть осуществлено путем увеличения потребления антиоксидантов, овощей и фруктов, каротиноидов пищи, нормализации индекса массы тела и отказа от курения. Многие из этих факторов связаны также с пониженным риском развития старческой дегенерации желтого пятна, что предполагает существование причинно-следственной связи. Исследования показывают, что повышение доли лютеина и зеаксантина, а также ликопина снижает риск макулярной дегенерации. Следует особенно отметить, что высокие уровни потребления различных овощей, обеспечивающих поступление в организм разнообразных каротиноидов,снижают риск заболеваний глаз более мощно, чем потребление индивидуальных каротиноидов.

Читайте также:  Народные средства при затяжном кашле у взрослых

В целом данные эпидемиологических исследований предполагают положительную взаимосвязь между высоким уровнем потребления каротиноидов и низким риском хронических, сердечно-сосудистых заболеваний, некоторых форм рака, уровнем иммунитета.

Исследования антиканцерогенного действия каротиноидов выявили протекторный эффект β-каротина от рака легких у некурящих и особенно у мужчин. Потребление высоких доз каротиноидов снижает риск некоторых видов лимфомы, но не влияет на величину риска развития рака мочевого пузыря. Ликопин способен предотвращать рак предстательной железы.

Снижение риска сердечнососудистых заболеваний под действием каротиноидов обусловлено защитой липопротеинов низкой плотности от перекисного окисления и уменьшением интенсивности оксидантного стресса в местах локализации атеросклеротических бляшек. Когортные исследования позволили установить защитную роль каротиноидов пищи от сердечнососудистых заболеваний в Италии, Японии, Европе и Коста-Рике. Существует ряд работ, подтверждающих защитный эффект ликопина в отношении предотвращения сердечнососудистых заболеваний. Эпидемиологические исследования на 662 больных и 717 здоровых людях из 10 различных Европейских стран показали дозозависимую взаимосвязь между уровнем потребления ликопина и риском инфаркта миокарда. При сравнении уровней потреблении ликопина в Литве и Швеции было показано возрастание риска развития и смертности от коронарной болезни сердца в условиях недостатка потребления ликопина. Как оказалось, ликопин томата, соусов, кетчупов, томатного сока значительно снижает уровень окисленных форм липопротеинов низкой плотности и уменьшает уровень холестерина в крови, снижая тем самым риск сердечно-сосудистых заболеваний.

Предотвращение раковых заболеваний при потреблении высоких доз каротиноидов связано со способностью последних ингибировать пролиферацию клеток, их трансформацию и модулировать экспрессию детерминантных генов. Окисленные каротиноиды (такие как β-криптоксантин и лютеин), а также неокисленные формы (такие как β-каротин и ликопин) связаны со снижением риска заболевания раком. Исследования на культурах клеток показали, что, помимо β-каротина, антиканцерогенную активность могут проявлять некоторые другие каротиноиды, причем активность, в ряде случаев вышактивности β-каротина (например, капсантин, α-каротин, лютеин, зеаксантин и др.).

Около 90% всех каротиноидов в пище и человеческом теле представлено β- и α-каротином, ликопином, лютеином и криптоксантином. Ликопин является одним из основных каротиноидов Средиземноморской диеты и обеспечивает поступление в организм человека до 50% всех каротиноидов. Среди овощей томат представляют собой основной источник ликопина, а продукты на основе томата (кетчуп, томатная паста, соусы) обеспечивают человека 85 % всего ликопина, поступающего с пищей. Антиканцерогенные свойства ликопина подтверждены эпидемиологическими исследованиями, исследованиями in vitro и на лабораторных животных, а также на человеке.

Читайте также:  Средство для домашнего туалета собаки

Основными механизмами антиканцерогенного действия ликопина, как предполагают, являются участие в дезактивации активных форм кислорода, регулировании работы системы детоксикации, влияние на пролиферацию клеток, индукция клеточных взаимосвязей, ингибирование клеточного цикла и модулирование передачи сигналов.

В целом человеком абсорбируется около 10-30% ликопина. Положительное влияние на уровень абсорбции ликопина оказывает присутствие жирорастворимых соединений, включая другие каротиноиды. Удивительно, но пространственная конфигурация центральной двойной связи молекулы ликопина определяет интенсивность его абсорбции. Показано, что цисликопин, образующийся при термической обработке томата, абсорбируется эффективнее, чем трансизомер сырых плодов. Цис-изомеры образуются также и в самом организме человека и животных при потреблении транс-форм.

Антиканцерогенные свойства ликопина томата проявляются в отношении рака предстательной железы, молочной железы, шейки матки, яичника, печени, легких, желудочно-кишечного тракта, поджелудочной железы.

Благодаря антиоксидантным свойствам каротиноиды способны защищать организм от других патологических состояний, связанных с оксидантным стрессом. Эпидемиологические исследования показывают, что β-каротин и ликопин совместно с витаминами С и Е в значительной степени снижают риск развития остеопороза. Этот факт представляется особенно важным в профилактике остеопороза у женщин в период менопаузы, характеризующийся существенным снижением антиоксидантной защиты.

Установлено положительное действие ликопина в снижении систолического давления у гипертоников, для которых характерно развитие оксидантного стресса.

Мужское бесплодие связано, как известно, с образованием в сперме значительного количества активных форм кислорода, в то время как у здоровых мужчин активные формы кислорода в семени не обнаружены. Учитывая, что содержание ликопина в семени инфертильных мужчин ниже, чем у здоровых лиц была предпринята попытка коррекции обеспеченности ликопином. Потребление в течение года такими больными 8 мг ликопина в день значительно повысило подвижность сперматозоидов, улучшало их морфологию и обеспечило 5% случаев зачатия.

В настоящее время исследуется роль ликопина в развитии нейродегенеративных заболеваний, таких как болезнь Альцгеймера. Благодаря высокому уровню усвоения кислорода, большим концентрациям липидов и низкой антиоксидантной способности человеческий мозг является весьма уязвимым для воздействия оксидантов. Показано, что ликопин присутствует в малых концентрациях в нервной ткани, причем, его концентрация снижена при болезни Паркинсона и сосудистой деменции. В Японии установлен защитный эффект ликопина томата от возникновения и развития эмфиземы. Ожидается, что защитный эффект ликопина может проявиться у больных диабетом, с заболеваниями кожи, ревматоидным артритом, периодонтальных заболеваниях и воспалительных процессах. Антиоксидантные свойства ликопина открывают также широкие возможности его применения в фармацевтической, пищевой и косметической промышленности.

Ликопин до сих пор не рассматривают как эссенциальный нутриент, и поэтому оптимальные уровни потребления не утверждены. Однако, основываясь на данных исследований протекторного действия ликопина, можно констатировать, что суточное потребление для борьбы с оксидантным стрессом и предупреждения хронических заболеваний должно составлять 5-7 мг (Levin, 2008). При наличии заболеваний, таких как рак или сердечнососудистые заболевания, уровни потребления ликопина желательно увеличить до 35-75 мг. Реальные уровни потребления ликопина составляют 3-16,2 мг/сутки в США, 25,2 мг – в Канаде, 1,3 мг – в Германии, 1,1 мг – в Великобритании и 0,7 мг – в Финляндии.

Источник

Лекарственные травы содержащие флавоноиды

Лекарственные растения рассматриваются как перспективный источник биологически активных соединений (БАС), обладающих антиоксидантной активностью, однако в Государственный реестр лекарственных средств, разрешенных к применению в Российской Федерации, включен лишь антиоксидант диквертин, представляющий собой дигидрокверцетин (таксифолин) – флавоноид из древесины лиственницы сибирской [9, 13]. Если на этом фоне рассматривать значимость антиоксидантных свойств сквозь призму механизма действия некоторых витаминных препаратов (витамины А, С, Е, Р и др.), гепатопротекторов и ангиопротекторов, то актуальность исследований, направленных на поиск новых антиоксидантов, является тем более бесспорной.

Читайте также:  Народные средства от грибка ногтя большого пальца ноги

В последнее время внимание исследователей привлекают фенольные соединения, среди которых наиболее активно изучаются флавоноиды [1-11, 13-15]. При этом флавоноиды, содержащиеся в лекарственных растениях, представляют интерес не только как потенциальные антиоксидантные препараты, но и как БАС, которые могут оказывать в суммарных растительных средствах, включая галеновые препараты, сопутствующий антиоксидантный эффект, способствующий успешному лечению какого-либо заболевания, причиной или следствием которого являются нарушения в системе антиоксидантной защиты организма [1, 9]. Лекарственное растительное сырье (ЛРС), содержащее флавоноиды, широко применяется в медицинской практике в качестве источника желчегонных, гепатопротекторных, антиоксидантных, ангиопротекторных, диуретических, противовоспалительных, противоязвенных, спазмолитических лекарственных средств [2, 7, 9, 14, 15]. За последние 15-20 лет число фармакопейных видов сырья, отнесенных к флавоноидам, увеличилось с 11 до 30 наименований [10]. Кроме того, флавоноиды имеют статус второй группы БАС в 35 видах лекарственных растений, включая эфиромасличное сырье (цветки пижмы обыкновенной, листья мяты перечной, трава полыни эстрагон и др.), а также виды, содержащие фенилпропаноиды, в частности, гидроксикоричные кислоты (цветки бессмертника песчаного и др.), в случае которых подходы к химической стандартизации достаточно противоречивы, а используемые методики анализа не всегда отвечают параметрам валидации [10].

Цель настоящих исследований – компьютерное прогнозирование активности антиоксидантной активности некоторых флавоноидов, широко встречаемых в лекарственных растениях.

Материал и методы исследования

В качестве объектов исследования служили фармакопейные растения, лекарственное растительное сырье, флавоноиды, выделенные из травы гречихи посевной (Fagopyrum sagittatum Gilib.) (рутин), травы зверобоя продырявленного (Hypericum perforatum L.) (бисапигенин), травы зверобоя пятнистого (Hypericum maculatum Grantz.) (гиперозид) листьев березы бородавчатой (Betula verrucosa Ehrh.) (гиперозид), древесины лиственницы сибирской (Larix sibirica L.) (дигидрокверцетин). Кверцетин, будучи агликоном рутина (3-О-рутинозид кверцетина), получен в результате кислотного гидролиза рутина при нагревании на водяной бане с последующей перекристаллизацией полученного осадка в водном этиловом спирте.

В работе использованы тонкослойная хроматография, колоночная хроматография, спектрофотомерия, 1Н-ЯМР-спектроскопия, масс-спектрометрия, различные химические превращения. 1Н-ЯМР- спектры получали на приборах «Bruker AM 300» (300 МГц), масс-спектры снимали на масс-спектрометре «Kratos MS-30», регистрацию УФ-спектров проводили с помощью спектрофотометра «Specord 40» (Analytik Jena). Воздушно-сухое растительное сырье подвергали исчерпывающему экстрагированию 70 % этиловым спиртом, полученные водно-спиртовые экстракты упаривали под вакуумом до густого остатка и далее подвергали хроматографическому разделению. Хроматографическую колонку (силикагель L 40/100) элюировали хлороформом и смесью хлороформ-этиловый спирт в различных соотношениях. Контроль за разделением флавоноидов осуществляли с помощью ТСХ-анализа на пластинках «Сорбфил ПТСХ-АФ-А-УФ» в системах хлороформ-этанол (9:1), хлороформ-метанол-вода (26:14:3), а также н-бутанол-ледяная уксусная кислота-вода (4:1:2).

Компьютерное прогнозирование антиоксидантной активности осуществляли с использованием программы PASS в виде списка активностей с двумя вероятностями Pa («быть активным») и Pi («быть неактивным») [12]. При этом только активности с Pa>Pi считаются возможными для анализируемого соединения [12].

Результаты исследования и их обсуждение

В ходе исследований с использованием программы PASS определено, что наиболее вероятное проявление антиоксидантной активности (Pa > Pi) возможно в случае флавоноловых гликозидов — рутина и гиперозида (табл. 1), что согласуется с экспериментальными данными по изучению антиоксидантной активности [3, 8]. Достаточно велика вероятность проявления антиоксидантной активности кверцетина (0.681 > 0.005) и бисапигенина (0.665 > 0.005), хотя в меньшей степени, чем в случае препарата сравнения – дигидрокверцетина (0.718 > 0.004) (табл. 1). Следует отметить, что данный прогноз коррелирует с результатами соответствующих экспериментальных исследований антиоксидантной активности [3, 8].

Прогноз антиоксидантной активности некоторых флавоноидов (Pa > Pi)

Химическая структура

Источник

Оцените статью