Лекарственные препараты полученные методом генной инженерии

ДНК как лекарство: клеточная и генная терапия меняют фармацевтику

Лекарства, полученные с помощью генной инженерии и клеточных технологий, вряд ли в ближайшие годы станут столь массовыми, что обгонят по продажам антибиотики и жаропонижающие. Но эти современные препараты незаменимы в лечении некоторых видов рака, редких наследственных заболеваний, терапии ВИЧ и других вирусных инфекций. А это большой рынок с потенциальным оборотом в десятки миллиардов долларов.

Стволовые клетки и генная инженерия

Генная терапия — общее название для технологий (а также соответствующих лекарств), которые используют изменение генов для достижения нужных медицинских эффектов. Например, в организм пациента могут доставить ген, кодирующий определенный белок. Когда нужная ДНК попадет в клетки, те смогут начать производство данного протеина, что будет иметь лечебное воздействие.

Другой вариант — отредактировать «дефектные» варианты генов, чтобы они начали работать правильно. Если у человека есть только одна мутантная версия гена, который вызывает заболевание, можно просто отрезать ее — и ДНК починит себя сама, скопировав генетическую информацию со своей второй «половинки». В случае, когда повреждены обе цепи ДНК, можно доставить в клетки донорскую последовательность.

Наконец, есть возможность с помощью специальных препаратов управлять экспрессией генов. Если активность определенного гена приводит к болезни, ее подавляют. И наоборот: в ситуации, когда заболевание возникает по причине «недоработки» какого-то гена, лекарство помогает его включить.

Что касается клеточной терапии, она в большинстве случаев представляет собой лечение стволовыми клетками. Они могут развиться в клетки любого типа, любого органа, если правильно управлять их ростом. И эту науку ученые освоили, но важно было еще и получить достаточный запас стволовых клеток. Проблему решил японский ученый Синья Яманака, который в 2006 году впервые смог получить индуцированные плюрипотентные стволовые клетки, то есть вернуть клетки взрослого человека в то состояние, когда из них может вырасти что угодно. Перед наукой открылись захватывающие перспективы: можно выращивать новые органы, восстанавливать поврежденные участки нервной системы, лечить заболевания крови — все это становится возможным с применением стволовых клеток.

На стыке клеточной и генной терапии находится технология модификации клеток. Сегодня ученые экспериментируют в основном с клетками иммунитета — Т-лимфоцитами. С помощью генетического редактирования их «учат» лучше распознавать вредителей (например, раковые клетки) и эффективно их уничтожать.

Генный рынок

В 2016 году рынок препаратов для генной терапии оценивался в $584 млн. А к 2023 году, по прогнозам аналитиков, глобальная выручка от продажи таких препаратов превысит $4,4 млрд — это более 30% роста ежегодно.

Среди лидеров рынка как традиционные фармацевтические гиганты (такие, как Novartis и GlaxoSmithKline), так и более специализированные компании (Spark Therapeutics, Bluebird bio, Amgen, Celgene).

Как следует из отчета Allied Market Research, подавляющее большинство препаратов генной терапии производится для больных с онкологическими патологиями. И в ближайшее время — как минимум до 2023 года — эта ниша сохранит свое первенство на рынке. Следом за лекарствами от рака идут средства генной терапии от редких заболеваний, сердечнососудистых болезней, неврологических расстройств, инфекций.

Лидеры рынка следуют за трендами и разрабатывают препараты для онкобольных. Например, в компании Amgen, которая возглавила топ-25 биотехнологических компаний в 2017 году с капитализацией в $129,1 млрд, из 37 препаратов в стадии клинических испытаний 20 относятся к лечению опухолей и заболеваний крови.

А компания Novartis стала первой, кому американское управление по санитарному надзору за качеством пищевых продуктов и медикаментов (Food and Drug Administration, FDA) разрешило запустить массовое производство клеточной терапии рака, основанной на генетической модификации. Это тот самый случай, когда фармкомпания производит лекарство из Т-лимфоцитов, превращая их в средство борьбы с онкологией, а именно с острым лимфобластным лейкозом.

Novartis уже начала получать первые деньги от продажи своего препарата под названием Kymriah. И немалые — каждый курс генной терапии рака стоит порядка $475 000. Вслед за этим FDA одобрило еще одно лекарство для лечения онкологии с подобным механизмом действия — Yescarta от компании Gilead Sciences (капитализация в 2017 году — $103 млрд); оно будет продаваться по цене в $373 000 за курс и помогать больным с неходжкинской лимфомой.

На продажах Kymriah фармгигант Novartis сможет зарабатывать порядка $300 млн в год. А Gilead Science аналитики пророчат выручку от препарата Yescarta в $250 млн за 2018 год.

Novartis хочет расширить спектр применения своего лекарства, чтобы его также можно было назначать пациентам с неходжкинской лимфомой — это позволит компании побороться за рынок, который оценивают примерно в $1 млрд. Но фармгиганту придется конкурировать не только с Gilead Sciences, которые уже предложили свое — и более дешевое — решение, но и с Bluebird Bio и Juno Therapeutics, разрабатывающими аналогичные продукты.

Прибыльность клеточной генной терапии аналитики пока затрудняются оценить. Но по их данным, стоимость производства подобных лекарств от рака должна составлять не менее $200 000 за курс.

По-настоящему революционные открытия, которые происходят на рынке генной терапии и грозят перевернуть фармацевтический рынок (как минимум в области лечения онкологии), привлекают в отрасль инвестиции: за последние пять лет компании-производители получили порядка $600 млн венчурного капитала на свои разработки.

Читайте также:  Лечение гормонального сбоя у женщин народными средствами

Рыночные перспективы стволовых клеток

По прогнозу аналитиков из Grand View Research, рынок препаратов, основанных на стволовых клетках, к 2025 году достигнет $15,6 млрд. Сегодня самые перспективные сферы применения стволовых клеток — это лечение болезни Паркинсона и болезни Альцгеймера, а также повреждений спинного мозга, сахарного диабета первого типа, заболеваний крови и онкологии.

Но пока что даже топовые компании, занимающиеся стволовыми клетками, не могут похвастаться такими же масштабами, как их коллеги по генной терапии. Например, крупнейшая компания, которая торгуется на бирже NASDAQ — Sangamo Therapeutics, — имеет капитализацию всего в $2,1 млрд.

В данный момент Sangamo Therapeutics разрабатывает два вида терапии на основе собственных — аутологичных — стволовых клеток для лечения заболеваний крови. Если производитель добьется успеха, то с помощью этих препаратов можно будет лечить такие генетические болезни крови, как бета-талассемия и серповидноклеточная анемия.

Развитие рынка стволовых клеток тормозится тем, что лекарства на основе аутологичных клеток делать невыгодно, так как такое производство нельзя масштабировать: лекарство, созданное для одного пациента, нельзя применить для другого. В то же время может быть прибыльно производить препараты на основе чужих — аллогенных — стволовых клеток. Но на разработку таких средств требуется много времени: необходимо сделать их «незаметными» для иммунитета пациентов, чтобы снизить риск отторжения.

Что дальше?

По всем оценкам, рынок клеточной и генной терапии в ближайшие годы будет активно развиваться, и средний годовой рост продаж составит не менее 30%. Новые открытия в сфере генной терапии обещают 2200 клинических испытаний, которые проводятся по всему миру: ученые ищут средства от различных видов рака, редких генетических нарушений, болезни Паркинсона, ВИЧ и других болезней.

Впереди планеты всей, как всегда, США — около 55% исследований происходят именно там. Также разработками в сфере генной терапии занимаются в Европе, Канаде и Китае. Один препарат, созданный при участии генной инженерии, запустили и в России — это Неоваскулген, лекарство, призванное помочь при ишемии нижних конечностей.

Что же касается стволовых клеток, рост рынка ожидается в результате появления новых препаратов регенеративной медицины — сейчас многие из них находятся в стадии разработки. Большинство исследований проходят в США, но новые решения в области стволовых клеток также появляются в Сингапуре и Японии.

Источник

Курс лечения за €1 млн: как появилась, с чем борется и сколько стоит генная терапия Статьи редакции

История генной инженерии и обзор её методов.

Каждый из живых организмов на Земле носит в клетках наследственный материал своих предков. Эти данные называются геномами, и они нужны непосредственно для создания и поддержания деятельности организма.

Свой геном есть у банана, свиньи и тутового дерева. Геном человека состоит из 23 пар хромосом в ядре клетки и митохондриальной ДНК. А хромосомы представляют собой сложный комплекс ДНК (дезоксирибонуклеиновая кислота) и белков.

ДНК имеет двухцепочечную структуру, где каждая цепь — последовательность нуклеотидов: цитозина, гуанина, аденина, тимина. Она обеспечивает сохранение и передачу генетической информации от клетки к клетке и регуляцию всех процессов в ней.

Молекула ДНК хранит биологическую информацию в виде генов. Белки обеспечивают основную работу внутри клетки, например, поддерживают метаболизм или реализуют её деление.

Генная инженерия (ГИ) работает над изменением наследственной информации. При помощи разных методов и инструментов она работает с генами и вводит их в другие организмы.

Методы ГИ работают точнее и быстрее:

  • Селекции, которая делает ставку на случайное и удачное сочетание родительских признаков в потомстве.
  • Искусственного мутагенеза, когда на исходные организмы воздействуют излучением или химическими реагентами, вызывая непредсказуемые мутации в ДНК.

Возможности инженерии позволяют вводить конкретный ген, ответственный за тот или иной признак, в другой организм, что повышает эффективность метода.

Генная инженерия появилась в 1970-х годах. В 1972 году команда стэнфордского учёного Пола Берга впервые провела сплайсинг генов — сшила фрагменты ДНК разного происхождения, получив рекомбинантную ДНК: в её состав вошли участки геномов онкогенного вируса SV40 и бактериофага (вируса, способного уничтожать бактерии).

Эксперименты вызвали опасения учёных относительно безопасности введения такой ДНК в клетки живых организмов, поэтому исследования остановили ещё до испытаний в естественных условиях.

В 1973 году команда учёных под руководством Герберт Бойера и Стэнли Коэна сообщила о первом в мире организме (Escherichia coli, или кишечная палочка), полученном с помощью рекомбинантной ДНК. Исследования показали, что ген определённого организма можно с помощью особых ферментов вставить в иное генетическое окружение.

Через два года состоялась международная встреча по проблеме рекомбинантных ДНК, организованная Полом Бергом, чтобы обсудить потенциальные опасности и регулирование биотехнологии. Группа из 140 биологов, юристов и врачей приняла участие в конференции — для разработки принципов безопасности при работе с рекомбинантной ДНК.

Спустя годы конференция вместе с публичными дебатами по этой проблеме увеличила общественный интерес к биомедицинским исследованиям и молекулярной генетике.

В 1977 году Фредерик Сенгер разработал метод секвенирования ДНК, который позволял установить последовательность нуклеотидов — веществ, составляющих ДНК.

За год до этого Роберт Свонсон и Герберт Бойер основали компанию Genentech, которая через несколько лет в сотрудничестве с университетскими коллективами получила первые в мире генно-инженерные лекарства: человеческие инсулин и гормон роста.

В 1980 году цена акции Genentech на Нью-Йоркской фондовой бирже увеличилась в два раза. Стоимость компании выросла до $500 млн, а журнал Time поместил Бойера на свою обложку.

Читайте также:  Как применять кокосовое масло от перхоти

В 1990 году официально стартовал проект «Геном человека», координируемый Министерством энергетики и Национальными институтами здравоохранения США.

Цель проекта — определить последовательности из 3 млрд пар химических оснований, составляющих ДНК человека, и выявить приблизительно 20–25 тысяч генов, чтобы открыть новые пути к успехам в медицине и биотехнологии.

Первоначально планировалось, что проект продлится 15 лет, но технический прогресс ускорил дату завершения до 2003 года.

Создание первого «чернового» варианта генома (рассматривалось 90% генома с точностью 99,9%) человека оценивалось в $300 млн. Однако все исследования по теме, включая сравнительные анализы и решение ряда этических проблем, по оценкам NHGRI, стоили в сумме всем странам-участницам около $3 млрд.

Производство высококачественной «готовой» последовательности, которая охватывает 95% генома с точностью 99,99%, — трудоёмкий процесс с высокими затратами. С тех пор стоимость секвенирования значительно снизилась и упростилась.

По данным NHGRI, цена секвенирования сегодня колеблется в диапазоне $1500–4000. Большинство последовательностей генома человека, производимых сегодня, — «черновые».

В современной биологии направленная генная инженерия (НГИ) представлена как одна из лидирующих отраслей в фундаментальных и прикладных исследованиях. Первым методом, который показал весь потенциал НГИ, стал Zinc Finger Nuclease (ZFN) в 1996 году, или «цинковые пальцы». Это белковые домены, по форме напоминающие палец.

«Цинковые пальцы» встречаются и в составе человеческих белков. Благодаря этому методу можно сконструировать цепь ZFN так, что она будет узнавать определённый участок ДНК. Это даёт возможность точечного воздействия на заданные участки в составе сложных геномов.

Однако метод имеет серьёзные недостатки: это долгий, трудоёмкий и дорогой процесс, также он может вызвать множественные дополнительные мутации в ДНК. Только несколько специализированных лабораторий смогли сконструировать свои собственные ZFN, при этом коммерчески доступные «цинковые пальцы» относительно дорогостоящие.

В 2011 году журнал Nature Methods назвал систему TALEN (Transcription Activator-like Effector Nucleases) «методом года» благодаря широкому спектру возможных применений в разных областях фундаментальной и прикладной науки.

Роль ДНК-распознающих структур в TALEN играют белковые домены, каждый из которых «узнаёт» только один нуклеотид. Такой механизм «узнавания» ДНК гораздо проще, и получение конструкции, необходимой для редактирования последовательности, становится более эффективным.

С помощью искусственных нуклеаз TALEN оказалось теоретически возможным внести двунитевой разрыв в любой участок ДНК. Такой подход позволяет восстанавливать последовательности ДНК, удалять, добавлять части гена или целые гены.

Проблемами этого метода всё так же остаются дороговизна и трудоёмкость процесса. Однако некоторые исследования указывают на большой терапевтический потенциал TALEN для лечения вируса папилломы человека и связанного с ней рака шейки матки.

В 2013 году в НГИ разработали ещё один метод: CRISPR/Cas. Он открыл новые возможности для манипуляций на уровне генома высших организмов. Несмотря на то, что все три вышеописанных метода сопоставимы по многим параметрам, CRISPR/Cas благодаря своей простоте оставил конкурентов позади.

Метод обеспечивает точное воздействие на заданные участки ДНК и может быть использован практически в любой современной молекулярно-биологической лаборатории.

В основе этой системы — особые участки бактериальной ДНК — CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats, или короткие палиндромные кластерные повторы). Разделяют эти повторы спейсеры — короткие фрагменты чужеродной ДНК. Последние встраиваются в геном после того, как ДНК рекомбинирует с её геномом.

Основная проблема технологии в том, что при использовании появляются незапланированные ошибки, приводящие к появлению нежелательных мутаций. Например, белки Cas9 редактируют ДНК в неожиданных местах. Для широкого внедрения метода в медицинскую практику вопрос должен быть подробно исследован.

Генная терапия — совокупность биомедицинских технологий лечения дефектов генов с помощью введения в организм генетических конструкций, способных восстановить или заменить дефектный ген, экспрессировать полноценный генный продукт или блокировать работу мутантных и чужеродных генов.

Генная терапия (ГТ) может работать по нескольким механизмам:

  • Замена болезнетворного гена здоровой копией.
  • «Выключение» вызывающего болезнь гена.
  • Введение нового или модифицированного гена в организм, чтобы помочь в лечении болезни.

Для внедрения в клетки новых генов в ГИ применяются векторы — молекулы ДНК, используемые как «транспортное средство» для искусственного переноса генетической информации.

Например, вирусы обладают естественной способностью доставлять генетический материал в клетки и могут использоваться в качестве векторов. Прежде чем использовать вирус для переноса терапевтических генов в клетки, его модифицируют, чтобы устранить способность вызывать заболевания.

Но они не подходят для системной доставки и применяются только для локального введения в небольшой участок ткани. Кроме того, они могут вызывать побочные эффекты из-за встраивания в нежелательные места генома.

Использование технологии CRISPR/Cas9 в генной терапии позволяет точно изменять ДНК клеток. Если совместить CRISPR/Cas9 с доставкой при помощи «векторов», это позволит системно воздействовать на организм и изменять геном большого числа клеток.

Генная терапия может быть использована для модификации клеток внутри или вне организма. Когда это делается внутри тела, врач вводит несущий ген в ту его часть, которая имеет дефектные клетки. Для модификации клеток вне организма кровь, костный мозг или другую ткань можно взять у пациента, а конкретные типы клеток можно выделить в лаборатории.

Новый ген вводится в эти клетки. Клетки оставляют для размножения в лаборатории, а позже вводят обратно пациенту, где они размножаются дальше и в конечном счёте дают желаемый эффект. Заменённые работающие клетки излечат человека. Но это не помешает их детям наследовать исходный дефектный ген.

Читайте также:  Вода с солью от перхоти

Чтобы гарантировать, что будущие поколения семьи пациента не будут затронуты генетическим заболеваниями, его половые клетки должны пройти генную терапию. Но в связи с этическими вопросами сейчас перспектива отдалённая.

Генная терапия имеет свои риски. Например, если гены внедряются в неправильном месте генома, они могут создать вредные мутации и инициировать развитие опухоли. К основным проблемам относят иммунный ответ организма, влияние на работу других генов и стоимость.

Первый препарат для генной терапии в Европе Glybera одобрили ещё в 2012 году, но власти Германии дали окончательное разрешение на продажу лишь к 2015 году. Glybera лечит дефицит липопротеинлипазы, болезнь, вызывающую накопление жира в крови, что приводит к сердечно-сосудистым заболеваниям, диабету и приступам панкреатита.

Компания установила розничную цену в €53 тысячи за ампулу. Курс лечения для одного пациента стоил более €1 млн, что сделало его самым дорогим лекарством в мире в то время. С 2012 года всего один пациент прошёл курс лечения этим препаратом. В апреле 2017 года компания UniQure, владеющая Glybera, объявила, что не будет продлевать разрешения на продажи.

30 августа 2017 года Американское управление по контролю за продуктами питания и лекарствами (FDA) одобрило ГТ для лечения острого лимфобластного лейкоза у людей от 3 до 25 лет. Это первая терапия для лечения онкологических заболеваний, одобренная в США. Коммерческое название терапии — Kymriah, и она будет стоить $475 тысяч. Международное название препарата — тисагенлеклусел.

Технология заключалась в «настройке» иммунитета больного против опухолевых клеток. Производитель — швейцарская фармацевтическая компания Novartis. В 2017 году прогнозировалось, что на продажах Kymriah Novartis сможет зарабатывать около $300 млн в год.

В том же году FDA одобрило препарат Yescarta (международное название — аксикабтаген цилолейкел). Он был разработан компанией Kite Pharma (до этого купленной Gilead Sciences за $12 млрд). Цена генной терапии составляет $373 тысячи, и Gilead Sciences не обещает возврата денег в случае неудачи.

По словам экспертов, все цифры относительны и все этапы лечения могут обойтись пациенту в $1 млн. Аналитики предсказывают Gilead Science выручку от препарата Yescarta в $250 млн за 2018 год.

Большинство препаратов ГТ создаётся для онкобольных. До 2023 года эта ниша сохранит первенство на рынке. Одна из лидеров отрасли — компания Amgen. Она имеет 37 препаратов в стадии клинических испытаний, 20 из них относятся к лечению опухолей и заболеваний крови. За лекарствами от рака следуют препараты от сердечно-сосудистых заболеваний и инфекций.

Компании-производители на рынке ГТ за последние пять лет получили около $600 млн венчурного капитала на свои исследования. Сейчас уже апробированы или проходят клинические испытания около 2700 разных способов генной терапии. В ближайшие четыре года рынок генного редактирования, согласно прогнозам, вырастет в два раза и достигнет объёма в $6,28 млрд.

Материал написан при поддержке сотрудников лаборатории геномики Института молекулярной и клеточной биологии и Института цитологии и генетики СО РАН.

Комментарий удален по просьбе пользователя ред.

Комментарий удален по просьбе пользователя

уверен, что будут. на масмаркете больше денег, чем в премиуме.

Однако, это не помогло ни Стиву Джобсу, ни Цукербергу, ни Медведеву ред.

Стив Джобс сам отказался от лечения, ему и обычная химиотерапия помогла бы

Комментарий удален по просьбе пользователя

но сначала он морковкой лечился вроде

Зато Путину помогло

https://vk.com/wall-35598590_63556
На фоне последних событий в области генетики иногда кажется, что геном человека — это нечто вроде конструктора, система, свободно открытая к изменениям без какой-либо защиты собственной стабильности. Новое исследование вносит коррективы в эту точку зрения.

После открытия CRISPR, технологии по редактированию генов, казалось, что сейчас она изменит в медицине все, а ученые и врачи смогут без проблем менять геном, излечивая все виды генетических заболеваний без особых проблем с помощью простой неинвазивной процедуры. Таков был план, но CRISPR — это довольно сложная процедура, а при испытании на людях она и вовсе требует сложной инженерии. А тут еще ученые из Стэнфорда выяснили, что большинство людей могут иметь к CRISPR врожденный иммунитет.

Результаты пока находятся в стадии препринта, а значит, они еще не отрецензированы и не опубликованы в журнале, но сама статья уже привлекла огромное внимание экспертов в вопросах генетики.

Часть системы CRISPR происходит от бактерий. Конечно, CRISPR был модифицирован, но в основе своей он по-прежнему сохраняет бактериальную основу. А значит наша иммунная система может на него реагировать и атаковать.

В центре проблемы белок Cas9, именно он таргетирует и вырезает определенные отрезки ДНК. Без Cas9 CRISPR работать не будет, но именно с этим белком наши тела могут сражаться. Cas9 обычно находится во вредоносных бактериях, вроде Staphylococcus aureus и Streptococcus pyogenes, которые соответственно вызывают стафилококковые и стрептококковые инфекции, и обычно это хорошо, что наши тела блокируют его действие.

То есть при реакции человеческой иммунной системы все модификации с генами, сделанные с помощи CRISPR, могут просто не сработать. Существуют уже несколько трюков, которые исследователи используют для обхода иммунных реакций. Например, использовать CRISPR только вне тела или в местах, которые иммунные клетки достичь не могут. Тем не менее, возможно ученым придется заменить Cas9 на другой протеин, не активирующий иммунные системы организма. И если так будет, все исследования подобного рода будут отброшены на несколько лет назад.

Источник

Оцените статью