Лекарственные препараты использованием нанотехнологий
Без малейшего преувеличения, начало XXI века проходит под знаком нанотехнологий. Нанотехнологии представляют совокупность приемов и методов, применяемых при изучении, производстве и использовании наноструктур, устройств и систем, включающих целенаправленный контроль и модификацию формы, размера, взаимодействия и интеграции составляющих их наномасштабных элементов (1-100 нм), для получения объектов с новыми химическими, физическими, биологическими свойствами. Приставка нано, пришедшая из греческого языка (nanos — гном), означает одну миллиардную долю (1нм=10-9м). Новые соединения и вещества, полученные с помощью нанотехнологий, имеют особую привлекательность для фармакологии, основной задачей которой является поиск новых эффективных лекарственных средств [1,6].
На сегодняшний день нанотехнологии широко применяются для точечной доставки лекарственных средств, что является особенно актуальным для терапии онкологических заболеваний, патологии нервной и сердечно-сосудистой систем, в спортивной медицине. Направленный транспорт лекарств в очаг развития патологического процесса позволяет добиться повышения эффективности уже существующей лекарственной терапии. Для нее служат нанокапсулы (стелс-липосомы) или векторы для генной терапии (вирусные и невирусные). В настоящее время в экспериментальной и клинической фармакологии используют дендримеры (обладающие антибластомным действием, выступают в роли транспортеров лекарственных средств); липосомы (обладают антиагрегантным и антиоксидантным действием, повышают биодоступность и транспортируют лекарства); нанокластеры (обладают антиоксидантным действием, повышают синтез АТФ, усиливают восприимчивость к лекарствам, ускоряют биохимические реакции и метаболизм лекарств в организме) [2,3].
На место наиболее вероятного средства целевой доставки лекарственных препаратов претендуют дендримеры, имеющие ветвящееся строение, к которым можно прикрепить определённое количество различных видов молекул. Так, например, первая группа молекул будет непосредственно бороться с болезнью, в то время как остальные займутся, так сказать, обеспечением процесса: помогут отследить лекарство в организме, выступит в качестве химического триггера, высвобождающего препарат по команде извне, а также будут посылать сигналы о результатах лечения. В данный момент некоторые нанопрепараты уже получили одобрение при лечении различных заболеваний, причём в первую очередь это касается серии препаратов, предназначенных для лечения онкологических заболеваний. Преимуществами дендримеров являются предсказуемость, контролируемость, возможность воспроизводить размеры макромолекул с большой точностью, наличие в макромолекулах пор и каналов, которые имеют хорошо воспроизводимую форму и размеры [2].
Примером нанокапсул являются липосомы, которые нетоксичны и биодеградируемы; их мембрана может сливаться с клеточной мембраной и обеспечивать доставку содержимого в клетку. Липосомы представляют собой наночастицы шаровидной формы, ограниченные билипидной мембраной, в полости которой находится водная среда. Активное вещество может располагаться в ядре липосомы (водорастворимые вещества) или в ее липидной оболочке (жирорастворимые вещества). Несмотря на то, что размеры липосом могут быть очень вариабельными, большинство липосом имеют диаметр менее 400 нм 4.
Существенное внимание ученые уделяют фосфолипидным наночастицам, которые применяются для введения вакцин и лекарственных соединений. Задачами лекарственных средств нового поколения является снабжение их такими системами доставки, которые обеспечивают постепенное дробное поступление лекарств в строго определенные органы или клетки-мишени, и оптимизация фармакологических свойств лекарственного вещества. Разработанные системы доставки используются во всех отраслях медицины: в эндокринологии, кардиологии, пульмонологии, онкологии и других. Их эффективность в значительной степени превышает эффективность обычных лекарственных форм [4].
Фуллерены — это сложные органические молекулы, имеющие шарообразную форму и полые внутри. Стенки фуллеренов непроницаемые для каких-либо материальных частиц: ионов, атомов, молекул. На их поверхности упорядоченно располагаются химические группы, подобранные таким образом, чтобы могли связываться с ранее выбранными клетками-мишенями, и были эффективны в борьбе с такими вирусными заболеваниями, как грипп и ВИЧ, а также нейродегенеративными, кардиологическими и онкологическими заболеваниями, остеопорозом и заболеваниями сосудов. Также исследуется возможность фуллеренов играть роль «ловушки» для свободных радикалов и дается оценка их противовирусной активности. Фуллерены обладают хорошей адсорбционной способностью, что способствуют созданию сорбентов на их основе для терапии атеросклероза [2,3].
Актуальным вопросом является возможность использования нанотрубок в качестве носителей лекарственных веществ. Нанотрубки представляют собой цельные цилиндрические структуры, образованные листками графита. Известно, что нанотрубки взаимодействуют с макромолекулами (ДНК, белки). Для доставки и высвобождения лекарственных веществ существуют три способа использования нанотрубок: сорбирование активных молекул препарата на сети нанотрубок или внутри их пучка; химическое присоединение лекарства к функционализированной внешней стенке нанотрубок; помещение молекул активного вещества внутрь просвета нанотрубки. Функционизированные нанотрубки могут служить переносчиками как небольших молекул лекарственных веществ, так и макромолекулярных комплексов[5].
Второе направление использования нанотехнологий в фармакологии – создание новых лекарственных средств, совершенствование хорошо известных лекарственных препаратов с целью повышения эффективности действия, улучшения биодоступности и уменьшения побочных эффектов. Кроме этого, наноносители обладают такими преимуществами, как высокая способность к проникновению активных компонентов внутрь клетки, улучшенные фармакокинетические показатели, возможность создания альтернативных лекарственных форм, а также переход от инъекционных форм преператов к назальным и трансдермальным. Еще одним важным преимуществом наночастиц как лекарственной формы выступает постепенное высвобождение лекарственного вещества, содержащегося в них, что ведет к пролонгированию времени его действия [2].
Необходимо подчеркнуть, что в настоящее время обширные перспективы использования в качестве лекарственных средств для диагностики и лечения ряда заболеваний имеют наночастицы металлов. Это обусловлено, прежде всего, широким спектром возможностей их практического применения, в которых используются специфические свойства как самих наночастиц, так и модифицированных ими материалов. Показано, в частности, что наночастицы серебра могут использоваться для получения разнообразных материалов с бактерицидными свойствами, наночастицы золота — для повышения эффективности и уменьшения побочных эффектов в радиотермальной терапии опухолей [7].
В то же время, за последнее десятилетие установлено, что наночастицы различных видов, особенно наночастицы металлов, попадая в организм человека, могут стать причиной серьезных заболеваний (нанопатологий), представляющих реальную угрозу здоровью и жизни людей. Известно, что наночастицы металлов могут проникать в организм человека разными путями: через слизистые оболочки дыхательных путей и пищеварительного тракта, трансдермально (например, при использовании косметических средств), через кровоток в составе вакцин и сывороток и т.д. Опасность распространения нанопатологий, хотя еще и не вполне осознана, но, несомненно велика уже сегодня, и, очевидно, будет нарастать в будущем. Выяснение причин патологического действия наночастиц и разработка способов борьбы с заболеваниями, вызванными проникновением в организм наночастиц, становятся сейчас предметом нового направления в экспериментальной медицине[8].
Вывод. В последние десять лет возросло число публикаций, посвященных наномедицине. Этот факт свидетельствует о том, что нанотехнологии, долгое время находившиеся почти исключительно в поле зрения материаловедения, физики и химии, сейчас активно внедряются в биологию, медицину, в частности, в фармакологию. Проведенные в последние годы исследования по созданию и изучению фуллеренов, дендримеров липосом, нанотрубок, наночастиц металлов показывают, что нанотехнологии открывают новые возможности в получении наночастиц и препаратов с принципиально новыми, еще не изученными свойствами. Таким образом, перспектива использования достижений нанотехнологии в фармакологии предвещает решение многих поставленных задач.
Источник
Лекарственные препараты использованием нанотехнологий
Пассивная доставка: захват ретикулоэндотелиальной системой.
Активная доставка; экстракорпоральное внедрение
В стадии изучения
Материалы и методы исследования
Нами предложен в качестве носителя лекарственных веществ желатин в виде лекарственных желатиновых плёнок — защёчных (суббуккальных), вагинальных, ректальных, а также в виде ушных трубочек, стоматологических шин и гранул. Плёнки изготовляются на основе полимеров и, как иммобилизованные препараты преимущественно местного действия, выгодно отличаются от традиционных лекарственных форм. Плёнки позволяют значительно уменьшить разовые и курсовые дозы лекарственных веществ, т.к. действуют непосредственно на зону патологии или максимально близко к ней, и лекарственное вещество высвобождается в заданном месте. Лекарственные плёнки могут быть перспективными и для достижения общего действия на организм, т.к. слизистые оболочки полостей и органов имеют богатую сеть (регионарного) кровообращения. Нами разработана рецептура плёнок на основе желатина, который привлёк наше внимание как полимерный препарат животного происхождения, лишённый видовой специфичности. Желатин совместим с большинством лекарственных веществ, обеспечивает практически полное высвобождение их в организме, имеет хорошие технологические свойства. Желатин (желатина) продукт гидролиза коллагена, биополимер, представляющий собой смесь полипептидов с относительной молекулярной массой 50 000-70 000 и их агрегатов с относительной молекулярной массой до 300 000. Макромолекулы желатина имеют форму спирали при температуре 20-25 °С, что обусловливает структурную вязкость и застудневание раствора. С повышением температуры до 35-40 °С растворы приобретают свойства ньютоновской жидкости. Благодаря достаточной физиологической индифферентности, отсутствию видовой специфичности и высокой гелеобразующей способности, желатин широко используется в медицине и других отраслях. Желатин привлёк наше внимание также хорошими технологическими свойствами: желатиновый гель легко формуется, хорошо воспринимает и высвобождает лекарственные вещества, имеющие различное агрегатное состояние и растворимость. Кроме того, при применении оказались полезными такие свойства, как гемостатическое и репаративное действие, способность сухих желатиновых плёнок впитывать экссудаты и прочно фиксироваться в месте аппликации за счёт собственной адгезии желатина. Нами были разработаны составы желатиновых плёнок для стоматологии, лечения ЛОР-заболеваний, гинекологических, проктологических и андрологических заболеваний, а также способы их применения [1, 5, 6, 7].
Результаты исследования и их обсуждение
В стоматологии использовались желатиновые плёнки, желатиновые шины и желатиновые гранулы с антибиотиками (линкомицин), растительными препаратами (мараславин. стоматофит, отвар коры дуба, мало облепиховое и др.), синтетическими веществами (мексидол, трентал и др.). Была установлена высокая терапевтическая эффективность указанных препаратов, быстрота наступления улучшения состояния и выздоровления, «адресное» действие малых доз (1/10‒1/20 средней терапевтической дозы в 1 плёнке). В ЛОР-практике применялись плёнки и ушные трубочки [7] с нитрофунгином, трихополом, эритромицином, метилурацилом, эстрактом сушеницы, а также с гомеопатическим препаратом «Отит» и «При гайморите» и др. Улучшение состояния больных наступало достаточно быстро — в 1-й или 2-й день лечения. Очень широко назначались пленки в акушерстве и гинекологии. Использовались прописи с гормональными препаратами (эстриол, прогестерон и др.), антибиотиками (тетрациклин, нистатин, эритромицин, гентамицин и др.), препаратами растительного происхождения (настойка шалфея, ромазулан, хлорофиллипт, чага, экстракт крапивы и др.). Пленки вводились вагинально или ректально. Пациентки отмечали их достоинства по сравнению с суппозиториями, удобство домашнего применения и доступную цену, последнее особенно важно при лечении сенильных кольпитов препаратами эстриола. В андрологии получены хорошие результаты в комплексном лечении простатита препаратами в виде плёнок. Разработаны и назначались желатиновые плёнки с гомеопатическими препаратами [6] «Антидавление», «Антистрах», «При описторхозе», «Антигриппин» и др. Полученные результаты демонстрируют эффективность гомеопатических препаратов в виде желатиновых пленок, как при лечении, так и при профилактике заболеваний, таких как грипп, бронхиальная астма, ожирение и др. «Адресное» применение малых доз лекарственных веществ в виде желатиновых плёнок снижает вероятность и /или интенсивность проявления токсического и побочного действия лекарственных веществ сужает круг противопоказаний, обеспечивает высокую терапевтическую эффективность. Терапевтический эффект достигался дозами, составляющими 110-120 средней терапевтической дозы. Прочная фиксация плёнок на слизистой рта позволяла пациенту свободно разговаривать и принимать небольшие количества жидкости, не опасаясь проглотить или смыть плёнку. Благодаря адгезии, ректальные и вагинальные плёнки не выпадают при движении пациента и при мочеиспускании, что выгодно отличает их от суппозиториев. Установлено выраженное гемостатическое действие желатина в плёнках при лечении обострений геморроя, при удалении зубов и др. Продолжительность полного растворения суббуккальных плёнок в дневное время суток — от 3 часов 52 минут до 4 часов. В ночное время растворение происходит гораздо медленнее.
Желатиновые плёнки обеспечивают более длительное лечебное действие по сравнению с другими средствами доставки, что способствует повышению терапевтической эффективности. Высвобождение происходит под действием градиента концентраций, эффект диффузии внутри плёнки выражен слабо ввиду малой толщины плёнки. Применение плёнок не требует помощи медицинского персонала и может проводиться амбулаторно, в домашних условиях, на рабочем месте, в полевых условиях. Врачи и пациенты отмечают удобство применения, сокращение времени и снижение трудоёмкости процедуры лечения, экономичность расхода лекарственного вещества и уменьшение стоимости лечения по сравнению с применением других лекарственных форм. Простота процедуры применения лекарственных форм на основе желатина позволяет осуществлять лечение в амбулаторных, домашних, стационарных, полевых и военно-полевых условиях. Проведенные нами исследования по использованию лекарственных желатиновых пленок позволяют нам обоснованно заключить, что лекарственные желатиновые пленки по своему механизму действия являются наноструктурами. Это доказывает и тот факт, что доза лекарственного вещества в наших пленках в 10-20 раз меньше, чем в обычной лекарственной форме, а терапевтический эффект может быть и больше. Эти необычные свойства лекарств в виде желатиновых пленок (значительное уменьшение дозы и увеличение эффективности), с нашей точки зрения, обеспечиваются образованием наноструктур при растворении лекарств в желатине при изготовлении по нашей технологии желатиновых пленок [1, 5, 6, 7]. По нашему мнению, желатиновые пленки занимают промежуточное положение между гомеопатическими лекарствами и лекарствами в обыч- ной дозе.
Источник