Как происходит биотрансформация лекарственных веществ

Как происходит биотрансформация лекарственных веществ

Лекарственные препараты, применяемые при различных патологических состояниях, в организме подвергаются трансформации, и в результате этих превращений (биотрансформации) может существенно изменяться как терапевтический эффект, так и токсичность [2, 4, 5, 6, 7, 8, 9], что следует учитывать, особенно при совместном назначении лекарственных средств (ЛС)

Биотрансформация (метаболизм) – изменение химической структуры ЛС и их физико-химических свойств под действием ферментов организма с целью превращения липофильных веществ, которые легко реабсорбируются (обратно всасываются) в почечных канальцах, в гидрофильные полярные соединения, которые быстро выводятся почками (не реабсорбируются в почечных канальцах).

Биотрансформация липофильных ЛС в основном происходит под влиянием ферментов печени, локализованных в мембране эндоплазматического ретикулума гепатоцитов. Эти ферменты называются микросомальными, потому что они оказываются связанными с мелкими субклеточными фрагментами гладкого эндоплазматического ретикулума (микросомами), которые образуются при гомогенизации печёночной ткани или тканей других органов и могут быть выделены центрифугированием (осаждаются в так называемой «микросомальной» фракции). В конце 50-х годов была обнаружена универсальная гемсодержащая монооксигеназа – цитохром Р450. Авторы открытия М. Клингерберг и Д. Гарфинкель установили, что этот фермент по химической природе простетической группы может быть отнесен к цитохромам. Т. Омура и Р. Сато в 1964 г. обнаружили, что комплекс восстановленного гемопротеина с окисью углерода имеет характерный максимум при 450 нм, что и определило название фермента. В настоящее время известно более 150 различных Р450, обнаруженных в животных, растениях, грибах, бактериях. Только у строго анаэробных бактерий гемопротеин отсутствует. Прокариоты содержат растворимый Р450. Переход к эукариотическим системам сопровождается встраиванием Р450 в мембрану, как в случае дрожжей и грибов. Все цитохромы Р450 высших организмов – мембранные ферменты. Р450 играют важную роль в окислении многочисленных соединений, как эндогенных (стероиды, желчные кислоты, жирные кислоты, проста- гландины, лейкотриены, биогенные амины), так и экзогенных (лекарства, яды, продукты промышленного загрязнения, пестициды, канцерогены, мутагены и т.п.), последние называют ксенобиотиками.

В плазме крови, а также в печени, кишечнике, легких, коже, слизистых оболочках и других тканях имеются немикросомальные ферменты, локализованные в цитозоле или митохондриях. Эти ферменты могут участвовать в метаболизме гидрофильных веществ.

Различают два основных вида метаболизма ЛС: – несинтетические реакции – метаболическая трансформация (окисление, восстановление, гидролиз); – синтетические реакции – коньюгация (ацетилирование, метилирование, образование соединений с глюкуроновой кислотой, глицином и др.).

ЛС могут подвергаться или метаболической биотрансформации (при этом образуются вещества – метаболиты), или конъюгации (при этом образуются коньюгаты). Но большинство ЛС сначала метаболизируется при участии несинтетических реакций (метаболической трансформации) с образованием реакционноспособных метаболитов, которые затем вступают в реакции коньюгации. Метаболиты менее активны, чем исходные соединения, но иногда оказываются активнее (токсичнее) исходных веществ. Коньюгаты обычно малоактивны.

К метаболической трансформации относятся следующие реакции: окисление, восстановление, гидролиз.

Окисление некоторых ЛС происходит под влиянием немикросомальных ферментов, которые локализованы в цитозоле или митохондриях. Для этих ферментов характерна субстратная специфичность, например, моноаминоксидаза типа А (МАО А) метаболизирует норадреналин, адреналин, серотонин, алкогольдегидрогеназа метаболизирует этиловый спирт до ацетальдегида.

Восстановление препаратов может происходить при участии микросомальных (хлорамфеникол) и немикросомальных ферментов (хлоралгидрат, налоксон).

Гидролиз ЛС осуществляется в основном немикросомальными ферментами (эстеразами, амидазами, фосфатазами) в плазме крови и тканях. При этом вследствие присоединения воды происходит разрыв эфирных, амидных и фосфатных связей в молекулах ЛС. Гидролизу подвергаются сложные эфиры – ацетилхолин, суксаметоний (гидролизуются при участии холинэстераз), амиды (прокаинамид), ацетилсалициловая кислота.

В процессе биосинтетических реакций (конъюгация) к функциональным группировкам молекул лекарственных веществ или их метаболитов присоединяются остатки эндогенных соединений (глюкуроновой кислоты, глутатиона, глицина, сульфаты и др.) или высокополярные химические группы (ацетильные, метальные группы). Эти реакции протекают при участии ферментов (в основном, трансфераз) печени, а также ферментов других тканей (легкие, почки). Локализуются ферменты в микросомах или в цитозольной фракции.

Наиболее общей реакцией является конъюгация с глюкуроновой кислотой. Присоединение остатков глюкуроновой кислоты (образование глюкуронидов) происходит при участии микросомального отдельного фермента глюкуронилтрансферазы, обладающей низкой субстратной специфичностью, вследствие чего очень многие ЛС (а также некоторые экзогенные соединения, такие как кортикостероиды и билирубин) вступают в реакцию конъюгации с глюкуроновой кислотой. В процессе конъюгации образуются высокополярные гидрофильные соединения, которые быстро выводятся почками (многие метаболиты также подвергаются конъюгации). Конъюгаты, как правило, менее активны и более токсичны, чем исходные ЛС.

Скорость биотрансформации ЛС зависит от многих факторов. В частности биотрансформация зависит от активность ферментов, метаболизирующих ЛС, зависит от пола, возраста, состояния организма, одновременного назначения других ЛС. У мужчин активность микросомальных ферментов выше, чем у женщин, так как синтез этих ферментов стимулируется мужскими половыми гормонами. Кроме того, вещества могут накапливаться в жировой ткани, которой у женщин от природы больше. Поэтому некоторые вещества метаболизируются быстрее у мужчин, чем у женщин.

В эмбриональном периоде отсутствует большинство ферментов метаболизма ЛС, у новорожденных в первый месяц жизни активность этих ферментов снижена и достигает достаточного уровня лишь через 1–6 месяцев (поэтому некоторые препараты могут назначаться как в меньших, так и в больших дозах, например диакарб). Гематоэнцефалический барьер не функционален, поэтому все лекарственные средства практически сразу попадают в головной и спинной мозг младенца со всеми вытекающими последствиями. Поэтому в первые недели жизни не рекомендуется назначать многие препараты: хлорамфеникол (левомицетин) вследствие недостаточной активности ферментов замедлены процессы его конъюгации и проявляются токсические эффекты.

Активность ферментов печени снижается в старческом возрасте, вследствие чего уменьшается скорость метаболизма многих ЛС (лицам старше 60 лет такие препараты назначают в меньших дозах). При заболеваниях печени снижается активность микросомальных ферментов, замедляется биотрансформация некоторых ЛС и происходит усиление и удлинение их действия. У утомленных и ослабленных больных обезвреживание ЛС происходит медленнее [1, 3, 10].

Под действием некоторых ЛС (фенобарбитал, рифампицин, карбамазепин, гризеофульвин) может происходить индукция (увеличение скорости синтеза) микросомальных ферментов печени. В результате при одновременном назначении с индукторами микросомальных ферментов других препаратов (например, глюкокортикоидов, пероральных контрацептивов) повышается скорость метаболизма последних и снижается их действие. В некоторых случаях может увеличиваться скорость метаболизма самого индуктора, вследствие чего уменьшаются его фармакологические эффекты (карбамазепин).

Читайте также:  Лечение недержания мочи при кашле у женщин народными средствами

Некоторые ЛС (циметидин, хлорамфеникол, кетоконазол, этанол) снижают активность метаболизирующих ферментов. Например, циметидин является ингибитором микросомального окисления и, замедляя метаболизм варфарина, может усилить его антикоагулянтный эффект и спровоцировать кровотечение. Известны вещества (фуранокумарины), содержащиеся в грейпфрутовом соке, которые угнетают метаболизм таких препаратов как: циклоспорин, мидазолам, алпразолам чем усиливают их действие. При одновременном применении ЛС с индукторами или ингибиторами метаболизма необходимо корректировать назначаемые дозы этих веществ.

Скорость метаболизма некоторых ЛС определяется генетическими факторами. Появился раздел фармакологии – фармакогенетика, одной из задач которого является изучение патологии ферментов лекарственного метаболизма. Изменение активности ферментов часто является следствием мутации гена, контролирующего синтез данного фермента. Нарушение структуры и функции фермента называют энзимопатией (ферментопатией). При энзимопатиях активность фермента может быть повышена, и в этом случае процесс метаболизма ЛС ускоряется и их действие снижается. И наоборот, активность ферментов может быть снижена, вследствие чего разрушение ЛС будет происходить медленнее и действие их будет усиливаться вплоть до появления токсических эффектов.

Источник

Фармакокинетика. Всасывание, распределение, выведение ЛП

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Фармакокинетика

Глава 1. Фармакокинетика (Т.А. Зацепилова, Д.А. Еникеева)

Фармакокинетические процессы — всасывание, рас­пределение, депонирование, биотрансформация и выве­дение – связаны с проникновением ЛВ через биологи­ческие мембраны (в основном через цитоплазматические мембраны клеток). Существуют следующие способы про­никновения веществ через биологические мембраны: пас­сивная диффузия, фильтрация, активный транспорт, об­легченная диффузия, пиноцитоз (рис. 1.1).

Пассивная диффузия. Путем пассивной диффузии ве­щества проникают через мембрану по градиенту концен­трации (если концентрация вещества с одной стороны мембраны выше, чем с другой, вещество перемещается через мембрану от большей концентрации к меньшей). Этот процесс не требует затраты энергии. Поскольку био­логические мембраны в основном состоят из липидов, таким способом через них легко проникают вещества, растворимые в липидах и не имеющие заряда, т.е. л и -пофильные неполярные вещества. И напро­тив, гидрофильные полярные соединения непосредствен­но через липиды мембран практически не проникают.

Если ЛВ являются слабыми электролитами – слабыми кислотами или слабы­ми основаниями, то проникновение таких веществ через мембраны зависит от степени их ионизации, так как путем пассивной диффузии через двойной липид-ный слой мембраны легко проходят только неионизированные (незаряженные) молекулы вещества.

Степень ионизации слабых кислот и слабых оснований определяется:

  1. значениями рН среды;
  2. константой ионизации (Ка) веществ.

Слабые кислоты в большей степени ионизированы в щелочной среде, а сла­бые основания — в кислой.

Ионизация слабых кислот

НА = Н + + А- щелочная среда

Ионизация слабых оснований

ВН + = В + Н + Кислая среда

Константа ионизации характеризует способность вещества к ионизации при определенном значении рН среды. На практике для характеристики способности веществ к ионизации используют показатель рКа, который является отрицатель­ным логарифмом Ka(-lg Ka). Показатель рКа численно равен значению рН среды, при котором ионизирована половина молекул данного вещества. Значения рКа слабых кислот, так же как и слабых оснований, варьируют в широких пределах. Чем меньше рКа слабой кислоты, тем легче она ионизируется даже при относи­тельно низких значениях рН среды. Так, ацетилсалициловая кислота (рКа= 3,5) при рН 4,5 ионизирована более чем на 90%, в то же время степень иониза­ции аскорбиновой кислоты (рКа=11,5) при том же значении рН составляет доли % (рис. 1.2). Для слабых оснований существует обратная зависимость. Чем выше рКа слабого основания, тем в большей степени оно ионизировано даже при отно­сительно высоких значениях рН среды.

Степень ионизации слабой кислоты или слабого основания можно рассчитать по формуле Гендерсона-Гассельбальха:

Эта формула позволяет определить, какова будет степень проникновения ЛВ (слабых кислот или слабых оснований) через мембраны, разделяющие среды орга­низма с различными значениями рН, например при всасывании Л В из желудка (рН 2) в плазму крови (рН 7,4).

Пассивная диффузия гидрофильных полярных веществ возмож­на через водные поры (см. рис. 1.1). Это белковые молекулы в мембране клеток, проницаемые для воды и растворенных в ней веществ. Однако диаметр водных пор невелик (порядка 0,4 нм) и через них могут проникать только небольшие гид­рофильные молекулы (например, мочевина). Большинство гидрофильных лекар­ственных веществ, диаметр молекул которых составляет более 1 нм, через водные поры в мембране клеток не проходят. Поэтому большинство гидрофильных ле­карственных веществ не проникают внутрь клеток.

Фильтрация — этот термин используют как по отношению к проникновению гидрофильных веществ через водные поры в мембране клеток, так и по отноше­нию к их проникновению через межклеточные промежутки. Фильт­рация гидрофильных веществ через межклеточные промежутки происходит под гидростатическим или осмотическим давлением. Этот процесс имеет существен­ное значение для всасывания, распределения и выведения гидрофильных Л В и зависит от величины межклеточных промежутков.

Так как межклеточные промежутки в различных тканях не одинаковы по ве­личине, гидрофильные ЛВ при различных путях введения всасываются в неоди­наковой степени и распределяются в организме неравномерно. Например, промежутки между эпителиальными клетками слизистой оболочки кишечника невелики, что затрудняет всасывание гидрофильных ЛВ из кишечника в кровь.

Промежутки между эндотелиальными клетками сосудов периферических тканей (скелетных мышц, подкожной клетчатки, внутренних органов) имеют достаточно большие размеры (порядка 2 нм) и пропускают большинство гидрофиль­ных ЛВ, что обеспечивает достаточно быстрое проникновение ЛВ из тканей в кровь и из крови в ткани. В то же время в эндотелии сосудов мозга межклеточные промежутки отсутствуют. Эндотелиальные клетки плотно прилегают к друг дру­гу, образуя барьер (гематоэнцефалический барьер), препятствующий проникно­вению гидрофильных полярных веществ из крови в мозг (рис. 1.3).

Активный транспорт осуществляется с помощью специальных транспортных систем. Обычно это белковые молекулы, которые пронизывают мембрану клетки (см. рис. 1.1). Вещество связывается с белком-переносчиком с наружной сторо­ны мембраны. Под влиянием энергии АТФ происходит изменение конформации белковой молекулы, что приводит к уменьшению силы связывания между переносчиком и транспортируемым веществом и высвобождению вещества с внутренней стороны мембраны. Таким образом в клетку могут проникать некоторые гидрофильные полярные вещества.

Читайте также:  Лечебные свойства масла чистотела

Активный транспорт веществ через мембрану обладает следующими характеристиками:

  • специфичностью (транспортные белки избирательно связывают и переносят через мембрану только определенные вещества),
  • насыщаемостью (при связывании всех белков-переносчиков количество вещества, переносимого че­рез мембрану, не увеличивается),
  • происходит против градиента концентрации,
  • требует затраты энергии (поэтому угнетается метаболическими ядами).

Активный транспорт участвует в переносе через клеточные мембраны таких ве­ществ, необходимых для жизнедеятельности клеток, как аминокислоты, сахара, пиримидиновые и пуриновые основания, железо, витамины. Некоторые гидрофиль­ные лекарственные вещества проникают через клеточные мембраны с помощью активного транспорта. Эти Л В связываются с теми же транспортными системами, которые осуществляют перенос через мембраны вышеперечисленных соединений.

Облегченная диффузия — перенос веществ через мембраны с помощью транс­портных систем, который осуществляется по градиенту концентрации и не требу­ет затраты энергии. Так же, как активный транспорт, облегченная диффузия — это специфичный по отношению к определенным веществам и насыщаемый процесс. Этот транспорт облегчает поступление в клетку гидрофильных полярных веществ. Таким образом через мембрану клеток может транспортироваться глюкоза.

Кроме белков-переносчиков, которые осуществляют трансмембранный перенос веществ внутрь клетки, в мембранах многих клеток есть транспортные белки — Р-гликопротеины, способствующие удалению из клеток чужеродных соединений. Р-гликопротеиновый насос обнаружен в эпителиальных клетках кишечника, в эндотелиальных клетках сосудов мозга, образующих гематоэнцефалический ба­рьер, в плаценте, печени, почках и других тканях. Эти транспортные белки пре­пятствуют всасыванию некоторых веществ, их проникновению через гистогема-тические барьеры, влияют на выведение веществ из организма.

Пиноцитоз (от греч. pino — пью). Крупные молекулы или агрегаты молекул со­прикасаются с наружной поверхностью мембраны и окружаются ею с образова­нием пузырька (вакуоли), который отделяется от мембраны и погружается внутрь клетки. Далее содержимое пузырька может высвобождаться внутри клетки или с другой стороны клетки наружу путем экзоцитоза.

РАСПРЕДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ В ОРГАНИЗМЕ

После поступления в системный кровоток ЛВ распределяются в различные органы и ткани. Характер распределения ЛВ во многом определяется их способ­ностью растворяться в воде или липидах (т.е. их относительной гидрофильноетью или липофильностью), а также интенсивностью регионарного кровотока.

Гидрофильные полярные вещества распределяются в организме неравномер­но. Большинство гидрофильных ЛВ не проникают в клетки и распределяются в основном в плазме крови и интерстициальной жидкости. В интерстициальную жидкость они попадают через межклеточные промежутки в эндотелии со­судов. В эндотелии капилляров мозга межклеточные промежутки отсутству­ют – эндотелиальные клетки плотно прилегают друг к другу (между клетками имеются так называемые плотные контакты). Такой непрерывный слой эндотелиальных клеток образует гематоэнцефалический барьер (ГЭБ), препятствую­щий распределению гидрофильных полярных веществ (в том числе ионизиро­ванных молекул) в ткани мозга (см. рис. 1.3). Определенную барьерную функцию выполняют, по-видимому, и клетки глии. Через этот барьер немногие гидро­фильные ЛВ (например, леводопа) проникают только с помощью активно­го транспорта.

Однако есть участки мозга, не защищенные гематоэнцефалическим барьером. Триггерная зона рвотного центра доступна для действия веществ, не проникаю­щих через ГЭБ, таких как антагонист дофаминовых рецепторов домперидон. Это позволяет использовать домперидон в качестве противорвотного средства, не ока­зывающего влияния на другие структуры мозга. Кроме того, при воспалении моз­говых оболочек гематоэнцефалический барьер становится более проницаемым для гидрофильных Л В (это позволяет вводить внутривенно натриевую соль бен-зилпенициллина для лечения бактериального менингита).

Кроме ГЭБ, в организме есть другие гистогематические барьеры (т.е. барьеры, отделяющие кровь от тканей), которые являются препятствием для распределения гидрофильных Л В. К ним относятся гематоофтальмический барь­ер, не пропускающий гидрофильные полярные Л В в ткани глаза, гематотестику-лярный и плацентарный барьеры. Плацентарный барьер во время беременности препятствует проникновению некоторых гидрофильных полярных ЛВ из орга­низма матери в организм плода.

Относительно равномерно распределяются в организме липофильные непо­лярные вещества. Они проникают путем пассивной диффузии через мембраны клеток и распределяются как во внеклеточной, так и во внутриклеточной жидко­стях организма. Липофильные ЛВ проходят через все гистогематические барье­ры, в частности, диффундируют непосредственно через мембраны эндотелиаль-ных клеток капилляров в ткани мозга. Липофильные Л В легко проходят через плацентарный барьер. Многие лекарственные средства могут оказывать нежела­тельное действие на плод и поэтому прием препаратов беременными женщинами должен находиться под строгим врачебным контролем.

Влияние на распределение ЛВ оказывает также интенсивность кровоснабже­ния органов и тканей. Лекарственные вещества распределяются быстрее в хоро­шо перфузируемые органы, т.е. органы с интенсивным кровоснабжением, такие как сердце, печень, почки и достаточно медленно — в ткани с относительно пло­хим кровоснабжением – подкожную клетчатку, жировую и костную ткань.

ДЕПОНИРОВАНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ В ОРГАНИЗМЕ

г При распределении в организме некоторые Л В частично могут задерживаться и накапливаться в различных тканях. Происходит это в основном вследствие об­ратимого связывания ЛВ с белками, фосфолипидами и нуклеопротеинами кле­ток. Этот процесс носит название депонирование. Концентрация вещества в месте его депонирования (в депо) может быть достаточно высокой. Из депо ве­щество постепенно высвобождается в кровь и распределяется по другим органам и тканям, в том числе достигая места своего действия. Депонирование может при­вести к удлинению (пролонгированию) действия препарата или возникновению эффекта последействия. Так происходит при введении средства для внутривен­ного наркоза, — тиопентала-натрия, высоколипофильного соединения, которое накапливается в жировой ткани. Препарат вызывает непродолжительный наркоз (порядка 15 мин), после прекращения которого наступает посленаркозный сон (в течение 2-3 ч), связанный с высвобождением тиопентала из депо.

Депонирование ЛВ в некоторых тканях может привести к развитию побочных эффектов. Например, тетрациклины связываются с кальцием и накапливаются в костной ткани. При этом они могут нарушать развитие скелета у маленьких детей. По этой же причине эти препараты не должны назначаться беременным женщинам.

Многие Л В связываются с белками плазмы крови. Слабокислые соединения (нестероидные противовоспалительные средства, сульфаниламиды) связывают­ся в основном с альбуминами (самой большой фракцией белков плазмы), а сла­бые основания – с α1-кислым гликопротеином и некоторыми другими белками плазмы крови. Связывание ЛВ с плазменными белками – обратимый процесс, который может быть представлен следующим образом:

Читайте также:  Шампунь против перхоти аналоги

ЛВ + белок комплекс ЛВ-белок.

Комплексы вещество — белок не проникают через мембраны клеток и через межклеточные промежутки в эндотелии сосудов (не фильтруются они и в капил­лярах почечных клубочков) и поэтому являются своеобразным резервуаром или депо данного вещества в крови.

Связанное с белками ЛВ не проявляет фармакологической активности. Но по­скольку это связывание обратимо, часть вещества постоянно высвобождается из комплекса с белком (происходит это при снижении концентрации свободного вещества в плазме крови) и оказывает фармакологическое действие.

Связывание Л В с белками плазмы крови не является специфичным. Разные ЛВ могут связываться с одними и теми же белками с достаточно высоким аффи­нитетом, при этом они конкурируют за места связывания на белковых молекулах и могут вытеснять друг друга. При этом большое значение имеет степень связы­вания веществ с белками при их терапевтических концентрациях в крови. Так, например, толбутамид (гипогликемическое средство, применяемое при сахарном диабете) приблизительно на 96% связывается с белками плазмы крови (при этом в свободном, а, следовательно, в активном состоянии в крови находится только около 5% вещества). При одновременном назначении сульфаниламидов, кото­рые в терапевтических концентрациях связываются со значительной фракцией белков плазмы крови, происходит быстрое вытеснение толбутамида из мест свя­зывания. Это приводит к повышению концентрации свободного толбутамида tfc крови. Результатом, как правило, является чрезмерное гипогликемическое дей­ствие препарата, а также более быстрое прекращение его эффекта, так как одно­временно ускоряется биотрансформация и выведение из организма несвязанно­го с белками вещества. Особую опасность представляет одновременное назначение сульфаниламидов и антикоагулянта варфарина, который связывается с белками плазмы крови на 99%. Быстрое повышение концентрации свободного варфарина (препарата с малой широтой терапевтического действия) приводит к резкому сни­жению свертываемости крови и кровотечениям.

ВЫВЕДЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ ИЗ ОРГАНИЗМА

Лекарственные вещества и их метаболиты выводятся (экскретируются) из организма в основном с мочой (почечная экскреция), а также с желчью в просвет кишечника.

Почечная экскреция. Выведение лекарственных веществ и их метаболитов почками происходит с участием трех основных процессов: клубочковой фильтрации, активной секреции в проксимальных канальцах и канальцевой реабсорбции.

Клубочковая фильтрация. Лекарственные вещества, растворенные в плазме крови (за исключением веществ, связанных с плазменными белками и вы­сокомолекулярных соединений), фильтруются под гидростатическим давлением через межклеточные промежутки в эндотелии капилляров почечных клубочков и попадают в просвет канальцев. Если эти вещества не реабсорбируются в почеч­ных канальцах, они выводятся с мочой.

Активная секреция. Путем активной секреции в просвет канальцев вы­деляется большая часть веществ, экскретируемых почками. Вещества секретируются в проксимальных канальцах с помощью специальных транспортных систем против градиента концентрации (этот процесс требует затраты энергии). Суще­ствуют отдельные транспортные системы для органических кислот (пенициллины, салицилаты, сульфаниламиды, тиазидные диуретики, фуросемид и др.) и орга­нических оснований (морфин, хинин, дофамин, серотонин, амилорид и ряд других веществ). В процессе выделения органические кислоты (также как органические основания) могут конкурентно вытеснять друг друга из связи с транспортными белками, вследствие чего экскреция вытесняемого вещества снижается.

Реабсорбция (обратное всасывание). Через мембраны почечных каналь­цев лекарственные вещества реабсорбируются путем пассивной диффузии по гра­диенту концентрации. Таким образом, реабсорбируются липофильные неполяр­ные соединения, так как они легко проникают через мембраны эпителиальных клеток почечных канальцев. Гидрофильные полярные вещества (в том числе иони­зированные соединения) практически не реабсорбируются и выводятся из орга­низма. Таким образом, выведение почками слабых кислот и слабых оснований прямо пропорционально степени их ионизации и, следовательно, в значитель­ной степени зависит от рН мочи.

/Кислая реакция мочи способствует экскреции слабых оснований (например, алкалоидов никотина, атропина, хинина) и затрудняет выделение слабых кислот (барбитуратов, ацетилсалициловой кислоты). Чтобы ускорить выведение почка­ми слабых оснований, следует изменить реакцию мочи в кислую сторону (сни­зить рН мочи). Обычно в таких случаях назначают хлорид аммония. И наоборот, если необходимо повысить экскрецию слабых кислот, назначают натрия гидро­карбонат и другие соединения, сдвигающие реакцию мочи в щелочную сторону (повышают рН мочи). Внутривенное введение натрия бикарбоната, в частности, используют для ускоренного выведения барбитуратов или ацетилсалициловой кислоты в случае их передозировки.

Реабсорбция некоторых эндогенных веществ (аминокислоты, глюкоза, моче­вая кислота) осуществляется путем активного транспорта.

Выведение через желудочно-кишечный тракт. Многие лекарственные вещества (дигоксин, тетрациклины, пенициллины, рифампицин и др.) выделяются с жел­чью в просвет кишечника (в неизмененном виде или в виде метаболитов и конъюгатов) и частично выводятся из организма с экскрементами. Однако часть веществ может повторно всасываться и при прохождении через печень снова

выделяться с желчью в просвет кишечника и т.д. Этот циклический процесс на­зывается энтерогепатической (кишечно-печеночной) циркуляцией. Некоторые ве­щества (морфин, хлорамфеникол) выделяются с желчью в виде конъюгатов с глю-куроновой кислотой (глюкуронидов), гидролизующихся в кишечнике с образованием активных веществ, которые снова подвергаются реабсорбции. Та­ким образом энтерогепатическая циркуляция способствует пролонгированию действия лекарственных веществ. Некоторые лекарственные вещества плохо вса­сываются из желудочно-кишечного тракта и полностью выводятся из организма через кишечник. Такие вещества в основном применяют для лечения или профи­лактики кишечных инфекций и дисбактериоза (неомицин, нистатин).

Газообразные и летучие вещества выделяются легкими. Таким образом выво­дятся средства для ингаляционного наркоза. Некоторые вещества могут выделять­ся потовыми, слюнными железами (пенициллины, йодиды), железами желудка (хинин) и кишечника (слабые органические кислоты), слезными железами (ри-фампицин), молочными железами в период лактации (снотворные средства, спирт этиловый, никотин и др.). Во время кормления лекарственные вещества, которые выделяются молочными железами, могут вместе с молоком попасть в организм ребенка. Поэтому кормящим матерям противопоказано назначение лекарствен­ных препаратов (цитостатиков, наркотических анальгетиков, хлорамфеникол а, изониазида, диазепама, антитиреоидных средств и др.), которые могут вызвать серьезные нарушения развития и неблагоприятно воздействовать на ребенка.

Для характеристики совокупности процессов, в результате которых активное лекарственное вещество удаляется из организма, вводится понятие элиминация, которое объединяет два процесса: биотрансформацию и выведение. Количествен­но процесс элиминации характеризуется рядом фармакокинетических параметров (см. раздел «Математическое моделирование фармакокинетических процессов»).

Источник

Оцените статью