Этап элиминации лекарственного средства

Лекция 3 элиминация лекарственных средств

Элиминация (лат. elimimo, elimmatum выносить за порог, удалять) представляет собой удаление лекарственных средств из организма в результате биотрансформации и экскреции.

Лекарственные средства элиминируются только из центральной камеры. Лекарства, находящиеся в периферической камере, предва­рительно транспортируются в центральную камеру, а затем подверга­ются элиминации.

Элиминация лекарственных средств из плазмы крови происходит согласно экспоненциальной кинетике первого порядка — выводится по­стоянная часть от концентрации за единицу времени. При работе сис­тем элиминации в условиях насыщения возникает кинетика нулевого порядка — выводится постоянное количество препарата за единицу вре­мени.

Элиминацию лекарственных средств характеризует ряд фармакокинетических параметров:

Константа скорости элиминации часть от концентрации в крови, удаляемая за единицу времени (вычисляется в %);

Период полуэлиминации — время, за которое концентрация в крови снижается наполовину (Т1/2);

Клиренс (англ. clearance — очищение) — объем жидких сред организ­ма, освобождающихся от лекарств в результате их биотрансфор­мации, выведения с желчью и мочой (вычисляется в мл/мин’кг).

Различают печеночный (метаболический, желчный) и почечный клиренсы. Например, у циметидина — противогистаминного средства, применяемого для терапии язвенной болезни, почечный клиренс равен 600 мл/мин, метаболичес­кий — 200 мл/мин, желчный — 10 мл/мин. Клиренс зависит от состояния фермен­тных систем печени и итенсивности печеночного кровотока. Для элиминации препарата с быстрым метаболизмом в печени — местного анестетика лидокаина основное значение имеет печеночный кровоток, для элиминации антипсихоти-ческих средств группы фенотиазина — активность ферментных систем детокси-кации.

При повторном применении лекарственных средств в биофазе циторецепторов создается равновесное состояние, когда количество поступающего пре­парата равно количеству элиминируемого. При равновесном состоянии концен­трация колеблется в небольших пределах, а фармакологические эффекты про­являются в полной мере. Чем короче период полуэлиминации, тем скорее дос­тигается равновесная концентрация, и тем больше разница между максималь­ной и минимальной концентрациями. Обычно равновесное состояние наступает через 3-5 периодов полуэлиминации.

Биотрансформация лекарственных средств

Биотрансформация представляет собой метаболические превра­щения лекарственных средств. В большинстве реакций образуются метаболиты, более полярные, чем исходные лекарственные средства. Полярные метаболиты хуже растворяются в липидах, но обладают вы­сокой растворимостью в воде, меньше подвергаются энтерогепатической циркуляции (выведение с желчью в кишечник и повторное вса­сывание в кровь) и реабсорбции в почечных канальцах. Без биотранс­формации одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет.

Эндобиотики подвергаются превращениям под влиянием специ­фических ферментов, осуществляющих метаболизм их эндогенных ана­логов. Ксенобиотики используют для метаболизма ферменты с малой субстратной специфичностью, например, окисляются при участии ци-тохрома Р-450, созданного в эволюции 3,5 миллиарда лет тому назад для инактивации стероидов.

Биотрансформация ксенобиотиков происходит в печени (90-95%), слизистой оболочке тонкого кишечника, почках, легких, коже, крови. Наиболее изучены процессы биотрансформации на мембранах глад­кого эндоплазматического ретикулума (ЭПР) печени. При гомогениза­ции и ультрацентрифугировании клеток канальцы ЭПР разрываются и превращаются в функционально активные фрагменты — микросомы. Реакции биотрансформации протекают также в ядре, цитозоле, митохондриях, плазматической мембране.

Процессы биотрансформации разделяют на 2 фазы. В реакциях первой фазы — метаболической трансформации молекулы лекарствен­ных средств подвергаются окислению, восстановлению или гидроли­зу. Большинство лекарств преобразуется в неактивные метаболиты, но также могут появляться активные и токсические производные (табл. 3.1). Во второй фазе — реакциях конъюгации лекарственные средства присоединяют ковалентной связью полярные фрагменты с образова­нием неактивных продуктов. Для реакций конъюгации необходима за­трата энергии.

Читайте также:  Народная медицина при прерывании беременности

Активные метаболиты лекарственных средств

Источник

Лекция 3 элиминация лекарственных средств

Элиминация (лат. elimimo, elimmatum выносить за порог, удалять) представляет собой удаление лекарственных средств из организма в результате биотрансформации и экскреции.

Лекарственные средства элиминируются только из центральной камеры. Лекарства, находящиеся в периферической камере, предва­рительно транспортируются в центральную камеру, а затем подверга­ются элиминации.

Элиминация лекарственных средств из плазмы крови происходит согласно экспоненциальной кинетике первого порядка — выводится по­стоянная часть от концентрации за единицу времени. При работе сис­тем элиминации в условиях насыщения возникает кинетика нулевого порядка — выводится постоянное количество препарата за единицу вре­мени.

Элиминацию лекарственных средств характеризует ряд фармакокинетических параметров:

Константа скорости элиминации часть от концентрации в крови, удаляемая за единицу времени (вычисляется в %);

Период полуэлиминации — время, за которое концентрация в крови снижается наполовину (Т1/2);

Клиренс (англ. clearance — очищение) — объем жидких сред организ­ма, освобождающихся от лекарств в результате их биотрансфор­мации, выведения с желчью и мочой (вычисляется в мл/мин’кг).

Различают печеночный (метаболический, желчный) и почечный клиренсы. Например, у циметидина — противогистаминного средства, применяемого для терапии язвенной болезни, почечный клиренс равен 600 мл/мин, метаболичес­кий — 200 мл/мин, желчный — 10 мл/мин. Клиренс зависит от состояния фермен­тных систем печени и итенсивности печеночного кровотока. Для элиминации препарата с быстрым метаболизмом в печени — местного анестетика лидокаина основное значение имеет печеночный кровоток, для элиминации антипсихоти-ческих средств группы фенотиазина — активность ферментных систем детокси-кации.

При повторном применении лекарственных средств в биофазе циторецепторов создается равновесное состояние, когда количество поступающего пре­парата равно количеству элиминируемого. При равновесном состоянии концен­трация колеблется в небольших пределах, а фармакологические эффекты про­являются в полной мере. Чем короче период полуэлиминации, тем скорее дос­тигается равновесная концентрация, и тем больше разница между максималь­ной и минимальной концентрациями. Обычно равновесное состояние наступает через 3-5 периодов полуэлиминации.

Биотрансформация лекарственных средств

Биотрансформация представляет собой метаболические превра­щения лекарственных средств. В большинстве реакций образуются метаболиты, более полярные, чем исходные лекарственные средства. Полярные метаболиты хуже растворяются в липидах, но обладают вы­сокой растворимостью в воде, меньше подвергаются энтерогепатической циркуляции (выведение с желчью в кишечник и повторное вса­сывание в кровь) и реабсорбции в почечных канальцах. Без биотранс­формации одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет.

Эндобиотики подвергаются превращениям под влиянием специ­фических ферментов, осуществляющих метаболизм их эндогенных ана­логов. Ксенобиотики используют для метаболизма ферменты с малой субстратной специфичностью, например, окисляются при участии ци-тохрома Р-450, созданного в эволюции 3,5 миллиарда лет тому назад для инактивации стероидов.

Биотрансформация ксенобиотиков происходит в печени (90-95%), слизистой оболочке тонкого кишечника, почках, легких, коже, крови. Наиболее изучены процессы биотрансформации на мембранах глад­кого эндоплазматического ретикулума (ЭПР) печени. При гомогениза­ции и ультрацентрифугировании клеток канальцы ЭПР разрываются и превращаются в функционально активные фрагменты — микросомы. Реакции биотрансформации протекают также в ядре, цитозоле, митохондриях, плазматической мембране.

Читайте также:  Как лечить народным средством токсический зоб

Процессы биотрансформации разделяют на 2 фазы. В реакциях первой фазы — метаболической трансформации молекулы лекарствен­ных средств подвергаются окислению, восстановлению или гидроли­зу. Большинство лекарств преобразуется в неактивные метаболиты, но также могут появляться активные и токсические производные (табл. 3.1). Во второй фазе — реакциях конъюгации лекарственные средства присоединяют ковалентной связью полярные фрагменты с образова­нием неактивных продуктов. Для реакций конъюгации необходима за­трата энергии.

Активные метаболиты лекарственных средств

Источник

Элиминация лекарств

Элиминацией лекарств (лат.elimino– выносить за порог) – называют совокупность процессов метаболизма и выведения, которые способствуют удалению активной формы лекарства из организма и снижению его концентрации в плазме крови. Элиминация включает в себя 2 процесса: биотрансформацию (метаболизм) и экскрецию лекарств. Основными органами элиминации являются печень и почки. В печени элиминация протекает путем биотрансформации, а в почках – путем экскреции.

Биотрансформация лекарств. Несинтетические и синтетические реакции метаболизма.

Биотрансформацией (метаболизмом) называют изменение структуры лекарств в результате их химической модификации. Основная направленность процессов метаболизма – перевод лекарств в гидрофильную форму, которая лишена фармакологической активности и способна легко выводиться из организма.

Метаболизм лекарств включает 2 фазы:

I фаза – несинтетические реакции метаболизма.К этой фазе относят окисление, восстановление или гидролиз молекул лекарства. Основная направленность реакций этого типа – лишить ксенобиотик активности.

Восстановление.Реакции восстановления характерны для:

Кетонов, альдегидов и карбоновых кислот. Эти реакции протекают в печени. Таким образом происходит, например, восстановление варфарина.

Нитроредукции ароматических соединений, содержащих нитрогруппу. Данный вид реакций протекает в печени и кишечнике. Таким образом происходит метаболизм метронидазола. R-NO2¦R-NH2

Гидролиз.Наиболее характерен для сложных эфиров и замещенных амидов. Протекает в стенке кишечника, печени и крови. Функцию гидролиза эфиров в крови чаще всего осуществляет фермент псевдохолинэстераза (бутирилхолинэстераза), который имеет низкую субстратную специфичность и может гидролизовать любую эфирную связь.

Путем гидролиза протекает метаболизм эналаприла, тестостерона пропионата (эфирный гидролиз), лидокаина (амидный гидролиз).

Окисление.Окисление биологических субстратов – универсальный механизм инактивации ксенобиотиков, который обеспечивают микросомальные ферменты печени. Это группа липофильных белков, сосредоточенная в мембранах эндоплазматического ретикулума гепатоцитов. Основой микросомальной системы ферментов являются 2 энзима: флавопротеин-НАДФ·Н-зависимая цитохром Р450редуктаза и гемопротеин цитохром Р450.

Схема 6. Цикл микросомального окисления. Пояснения в тексте. Л – лекарственное вещество.

Первоначально, окисленный Р450присоединяет лекарственное вещество. Затем, комплекс цитохром-лекарство восстанавливается НАДФ·Н-зависимой редуктазой и присоединяет кислород. Для активации молекулы кислорода НАДФ·Н-зависимая редуктаза повторяет цикл восстановления. На финальном этапе, один из атомов кислорода включается в молекулу воды, а второй – в лекарственное вещество, после чего цитохром регенерирует в исходное состояние.

Цитохром Р450является не 1 ферментом, а суперсемейством из более чем 300 изоформ, способных катализировать около 60 типов окислительных реакций, с сотнями потенциальных субстратов. Фактически, цитохромы способны обеспечить окисление не только всех существующих в настоящее время молекул лекарств, но и все лекарства, которые когда-либо еще будут синтезированы.

Молекулы цитохрома Р450, которые функционируют в клетках человека могут быть объединены в 17 семейств:CYP1-CYP17. Наибольшую роль в метаболизме лекарств играют первые 3 семействаCYP1-CYP3 (из них изоформыCYP3A4/3A5 иCYP2D6 метаболизируют 75% всех лекарств).

Читайте также:  Как снять отек с глаз после удара народные средства

II фаза – синтетические реакции метаболизма.Как правило, эти реакции протекают только после того, как завершиться фазаI. Синтетические реакции метаболизма призваны повысить гидрофильность ксенобиотика. Все реакции этой группы могут быть разделены на 2 вида:

Реакции, в которых активируется конъюгирующее вещество:

Источник

Элиминация лекарств

Элиминацией лекарств (лат.elimino– выносить за порог) – называют совокупность процессов метаболизма и выведения, которые способствуют удалению активной формы лекарства из организма и снижению его концентрации в плазме крови. Элиминация включает в себя 2 процесса: биотрансформацию (метаболизм) и экскрецию лекарств. Основными органами элиминации являются печень и почки. В печени элиминация протекает путем биотрансформации, а в почках – путем экскреции.

Биотрансформация лекарств. Несинтетические и синтетические реакции метаболизма.

Биотрансформацией (метаболизмом) называют изменение структуры лекарств в результате их химической модификации. Основная направленность процессов метаболизма – перевод лекарств в гидрофильную форму, которая лишена фармакологической активности и способна легко выводиться из организма.

Метаболизм лекарств включает 2 фазы:

I фаза – несинтетические реакции метаболизма.К этой фазе относят окисление, восстановление или гидролиз молекул лекарства. Основная направленность реакций этого типа – лишить ксенобиотик активности.

Восстановление.Реакции восстановления характерны для:

Кетонов, альдегидов и карбоновых кислот. Эти реакции протекают в печени. Таким образом происходит, например, восстановление варфарина.

Нитроредукции ароматических соединений, содержащих нитрогруппу. Данный вид реакций протекает в печени и кишечнике. Таким образом происходит метаболизм метронидазола. R-NO2¦R-NH2

Гидролиз.Наиболее характерен для сложных эфиров и замещенных амидов. Протекает в стенке кишечника, печени и крови. Функцию гидролиза эфиров в крови чаще всего осуществляет фермент псевдохолинэстераза (бутирилхолинэстераза), который имеет низкую субстратную специфичность и может гидролизовать любую эфирную связь.

Путем гидролиза протекает метаболизм эналаприла, тестостерона пропионата (эфирный гидролиз), лидокаина (амидный гидролиз).

Окисление.Окисление биологических субстратов – универсальный механизм инактивации ксенобиотиков, который обеспечивают микросомальные ферменты печени. Это группа липофильных белков, сосредоточенная в мембранах эндоплазматического ретикулума гепатоцитов. Основой микросомальной системы ферментов являются 2 энзима: флавопротеин-НАДФ·Н-зависимая цитохром Р450редуктаза и гемопротеин цитохром Р450.

Схема 6. Цикл микросомального окисления. Пояснения в тексте. Л – лекарственное вещество.

Первоначально, окисленный Р450присоединяет лекарственное вещество. Затем, комплекс цитохром-лекарство восстанавливается НАДФ·Н-зависимой редуктазой и присоединяет кислород. Для активации молекулы кислорода НАДФ·Н-зависимая редуктаза повторяет цикл восстановления. На финальном этапе, один из атомов кислорода включается в молекулу воды, а второй – в лекарственное вещество, после чего цитохром регенерирует в исходное состояние.

Цитохром Р450является не 1 ферментом, а суперсемейством из более чем 300 изоформ, способных катализировать около 60 типов окислительных реакций, с сотнями потенциальных субстратов. Фактически, цитохромы способны обеспечить окисление не только всех существующих в настоящее время молекул лекарств, но и все лекарства, которые когда-либо еще будут синтезированы.

Молекулы цитохрома Р450, которые функционируют в клетках человека могут быть объединены в 17 семейств:CYP1-CYP17. Наибольшую роль в метаболизме лекарств играют первые 3 семействаCYP1-CYP3 (из них изоформыCYP3A4/3A5 иCYP2D6 метаболизируют 75% всех лекарств).

II фаза – синтетические реакции метаболизма.Как правило, эти реакции протекают только после того, как завершиться фазаI. Синтетические реакции метаболизма призваны повысить гидрофильность ксенобиотика. Все реакции этой группы могут быть разделены на 2 вида:

Реакции, в которых активируется конъюгирующее вещество:

Источник

Оцените статью