Депонирование лекарственного средства это

Оборот и вывод из оборота маркированных лекарственных препаратов

В системе МДЛП необходимо учитывать отгрузку препаратов со склада, приемку лекарств в аптеке, перемещение ЛП и вывод лекарственных препаратов из оборота. Давайте пройдемся по каждому пункту и посмотрим, какой набор сведений нужно передавать в систему маркировки.

Отгрузка лекарственных препаратов со склада

При отгрузке ЛП со склада в МДЛП направляются следующие сведения:

  1. Дата совершения операции.
  2. Тип операции отгрузки:
    • реализация;
    • возврат поставщику.
  3. ИНН/КПП отправителя.
  4. Адрес места осуществления деятельности отправителя.
  5. ИНН/КПП получателя.
  6. Адрес места осуществления деятельности получателя.
  7. Источник финансирования:
    • бюджетный;
    • внебюджетный.
  8. Реквизиты первичного документа, подтверждающего переход права собственности и счет-фактуры (за исключением субъектов, применяющих специальные налоговые режимы).
  9. Цена реализации, в рублях.
  10. 10.1 Перечень уникальных идентификаторов вторичной (потребительской) упаковки ЛП и/или уникальных идентификаторов третичной (заводской, транспортной) упаковки ЛП
    ИЛИ
    10.2 GTIN.
  11. В случае выбора шага 10.2 необходимо подтвердить перечень уникальных идентификаторов вторичной (потребительской) упаковки ЛП и/или уникальных идентификаторов третичной (заводской, транспортной) упаковки ЛП, полученный в Информационном ресурсе маркировки от покупателя.

Информация предоставляется в отношении каждой упаковки ЛП.

Приемка лекарственных препаратов в аптеке

При приемке ЛП в МДЛП направляются следующие сведения:

  1. Дата совершения операции.
  2. ИНН/КПП продавца.
  3. ИНН/КПП покупателя.
  4. Тип операции приемки:
    • поступление;
    • возврат от поставщика.
  5. Адрес места осуществления деятельности покупателя.
  6. Реквизиты первичного документа, подтверждающего переход права собственности и счет-фактуры (за исключением субъектов, применяющих специальные налоговые режимы).
  7. Цена приобретения, в рублях.
  8. Перечень уникальных идентификаторов вторичной (потребительской) упаковки ЛП и/или уникальных идентификаторов третичной (заводской, транспортной) упаковки ЛП.

Информация предоставляется в отношении каждой упаковки ЛП.

Перемещение лекарственных препаратов

При перемещении ЛП между адресами осуществления деятельности (согласно лицензии) без перехода права собственности в МДЛП направляются следующие сведения:

  1. Дата совершения операции.
  2. ИНН/КПП субъекта обращения.
  3. ИНН/КПП покупателя.
  4. Адрес места осуществления деятельности отправителя.
  5. Адрес места осуществления деятельности получателя.
  6. Реквизиты первичного документа, подтверждающего внутреннее перемещение ЛП.
  7. Перечень уникальных идентификаторов вторичной (потребительской) упаковки ЛП и/или уникальных идентификаторов третичной (заводской, транспортной) упаковки ЛП.

Срок подачи сведений в МДЛП составляет 5 рабочих дней, но до совершения следующих операций с товаром.

Вывод из оборота лекарственных препаратов

При выводе ЛП из оборота необходимо представить следующую информацию в МДЛП:

  1. Дату совершения операции.
  2. ИИН/КПП субъекта обращения.
  3. Адрес места осуществления деятельности.
  4. Тип вывода ЛП из оборота:
    • розничная продажа;
    • отпуск по льготному рецепту;
    • использование при оказании медицинской помощи;
    • уничтожение;
    • прочее.
  5. Указать реквизиты первичного документа. Для каждого типа вывода (см. пункт 4) используются разные первичные документы:
    • для розничной продажи — номер кассового чека;
    • для отпуска по льготному рецепту – номер и дата регистрации льготного рецепта;
    • при использовании при оказании медицинской помощи — реквизиты накладной на перемещение ЛП в отделения;
    • при уничтожении — реквизиты договора и акта передачи на уничтожение;
    • при прочих основаниях — реквизиты первичного документа, подтверждающего вывод ЛП из оборота.
  6. При розничной продаже указывается стоимость препарата, при отпуске по льготному рецепту, стоимость указывается при ее наличии.
  7. При уничтожении ЛП указываются ИНН/КПП организации, осуществляющей уничтожение, а также адрес места осуществления деятельности по уничтожению ЛП.
  8. Также при выводе ЛП из оборота отражается перечень уникальных идентификаторов вторичной (потребительской) упаковки ЛП и/или уникальных идентификаторов третичной (заводской, транспортной) упаковки ЛП.

Источник

1.3. Депонирование лекарственных веществ

При распределении в организме некоторые ЛВ могут задерживать- ся и накапливаться в различных тканях. Происходит это в основном вследствие обратимого связывания ЛВ с белками, фосфолипидами и нуклеопротеинами клеток. Этот процесс носит название депони- р о в а н и е . Вещества могут депонироваться в различных тканях, что отчасти зависит от физико-химических свойств ЛВ. В соедини- тельной ткани могут накапливаться полярные соединения, жиро-

вая ткань — основное место депонирования липофильных веществ. Концентрация вещества в месте его депонирования (в депо) может быть очень высокой. Так, концентрации противомалярийного средс- тва хлорохина в печени, где он избирательно накапливается, в 1000 раз превышают его концентрации в плазме крови.

Читайте также:  Лекарственные препараты для лечения климакса у женщин

Некоторые вещества, избирательно накапливаясь в определенных органах и тканях, оказывают там специфическое действие. Например, йод, необходимый для синтеза тиреоидных горомонов, концентриру- ется в щитовидной железе, а фтор, принимающий участие в формировании костной ткани, накапливается в костях и зубах.

Депонирование некоторых ЛВ может привести к развитию побочных эффектов. Тетрациклины, связываясь с кальцием, накапливаются в кос- тной ткани, в том числе в зубах, что может привести к нарушению формирования скелета при внутриутробном развитии плода и пигментации и повреждению зубов у маленьких детей. Поэтому назначение тетрацик-линов противопоказано беременным женщинам и детям до 8 лет.

Однако действие большинства ЛВ развивается не в местах их депо- нирования. Из депо вещества постепенно высвобождаются в кровь и распределяются в другие органы и ткани, достигая места своего действия. При этом депонирование может привести или к удлине- нию (пролонгированию) действия препарата, или к возникновению эффекта последействия. Эффект последействия возникает, например, при введении средства для внутривенного наркоза тиопентала натрия, высоколипофильного соединения, в большом количестве накаплива- ющегося в жировой ткани. Сразу после введения тиопентал распреде- ляется в головной мозг и вызывает непродолжительный наркоз (около 15 мин), после прекращения которого развивается посленаркозный сон (в течение 2-3 ч), связанный с центральным действием препарата, высвобождаемого из жирового депо.

Самый распространенный вид депонирования ЛВ — связывание с белками плазмы крови. Слабокислые соединения (нестероидные противовоспалительные средства, сульфаниламиды) связываются в основном с альбуминами, а слабые основания — с α1-кислым гли- копротеином и другими белками плазмы крови. Некоторые вещества (глюкокортикоиды, препараты железа) избирательно связываются с определенными плазменными белками (транскортином, трансфер-рином).

Связывание ЛВ с белками плазмы крови — обратимый процесс, который может быть представлен следующим образом:

ЛВ + белок ↔ комплекс ЛВ-белок

Комплексы ЛВ-белок не проникают через мембраны клеток и через межклеточные промежутки в эндотелии сосудов (не фильтруются они и в капиллярах почечных клубочков) и поэтому служат своеобразным резервуаром (депо) данного вещества в крови.

Связанные с белками ЛВ не достигают места своего действия и поэтому не проявляют фармакологической активности. Но поскольку это связывание обратимо, часть ЛВ постепенно, по мере снижения концентрации свободного вещества в плазме крови высвобождается из комплекса с белком и оказывает фармакологическое действие. Иногда оно развивается медленнее, чем при применении ЛВ, не связы- вающихся с белками плазмы крови. При связывании с плазменными белками замедляется также проникновение ЛВ в печень и фильтра- ция в почках, что приводит к снижению скорости биотрансформации и выведения ЛВ и, следовательно, к пролонгированию их действия.

Для большинства ЛВ связывание с белками плазмы крови неспе- цифично. Разные ЛВ могут связываться с одними и теми же белками с достаточно высоким аффинитетом, при этом они конкурируют за места связывания на белковых молекулах и могут вытеснять друг друга. В таких случаях большое значение имеет степень связывания веществ с белками при их терапевтических концентрациях в крови. Например, толбутамид (гипогликемическое средство, применяемое при сахарном диабете) приблизительно на 96% связывается с белками плазмы крови, т.е. в свободном (активном) состоянии в крови находится только около 5% вещества. При одновременном назначении сульфаниламидов, также интенсивно связывающихся с белками плазмы крови, происходит быс- трое вытеснение толбутамида из мест связывания, что приводит к значительному повышению концентрации свободного вещества в крови. В результате, как правило, развивается чрезмерное гипогликемическое действие, но менее продолжительное, так как одновременно ускоряется биотрансформация толбутамида и его выведение из организма. Особую опасность представляет одновременное назначение сульфанилами- дов и антикоагулянта варфарина, связывающегося с белками плазмы крови на 99%. Быстрое повышение концентрации свободного варфарина (препарата с малой широтой терапевтического действия) может привести к резкому снижению свертываемости крови и кровотечениям.

Вытеснение из связи с белками не приводит к клинически значи- мому изменению концентрации свободного вещества в крови, если

ЛВ связывается с белками менее чем на 90%. Значение имеют также другие факторы, такие как медленное вытеснение вещества, депони- рование вещества в тканях, что уменьшает концентрацию свободного ЛВ в крови и, следовательно, устраняет причину его токсического действия. Поэтому лишь вытеснение немногих ЛВ из связи с белками плазмы крови приводит к клинически значимым последствиям.

Читайте также:  Бородавки народные средства избавления

Источник

Депонирование лекарственных средств

Лекарственные средства транспортируются к циторецепторам и органам элиминации в форме депо с белками крови. Слабые кислоты связываются с альбуминами, слабые основания — с кислыми 1-гликопротеинами и липопротеинами (табл. 5). Адсорбция на белках обратима и происходит по принципу комплементарности при участии вандерваальсовых, водородных, ионных, дипольных сил взаимодействия, алкилирование белков наблюдается редко. Как известно, катионы аминов образуют с анионами карбоновых кислот в молекулах белков ионные и водородные связи, которые дополнительно стабилизируются вандерваальсовыми связями. При взаимодействии лекарственных средств с ароматическими группами белков гидрофобные связи дополняются комплексонообразованием с переносом заряда. Реакция с белками крови превращает водорастворимые лекарственные средства в липофильные.

Таблица 5. Белки плазмы крови и форменные элементы, связывающие лекарственные средства

Белки, форменные элементы

Бутадион, кислота ацетилсалициловая, фуросемид, пенициллины, цефалоспорины, сульфаниламиды

Аминазин, имипрамин, хинидин, тетрациклины

Лидокаин, празозин, анаприлин, имипрамин, хинидин, дизопирамид, верапамил, дипиридамол

Тубокурарин, морфин, кодеин

Местные анестетики, пентазоцин, аминазин, имипрамин, викасол, нитрофураны

Связанная с белками фракция, не оказывая фармакологического действия, возмещает удаленные из циркуляции молекулы активной свободной фракции. Период полуэлиминации комплекса лекарственного средства с белками крови составляет всего 20 мс.

Более чем на 90 % с белками связываются β-адреноблокатор анаприлин, противоэпилептический препарат дифенин, нестероидные противовоспалительные средства, нейролептики аминазин и галоперидол, транквилизаторы хлозепид и сибазон, трициклические антидепрессанты, сердечный гликозид дигитоксин, мочегонное средство фуросемид. Специфические транспортные белки есть у витаминов, гормонов, ионов железа.

При высокой степени связывании с белками действие лекарственных средств замедляется. Повышение количества 1-гликопротеинов у пациентов с инфарктом миокарда и острыми воспалительными заболеваниями снижает эффективность фармакотерапии анаприлином, лидокаином, хинидином. Напротив, дефицит белков крови (недоношенность, гипотрофия детей, голодание, заболевания печени и почек, ожоги) сопровождается ростом доли свободной фракции и усилением фармакологического эффекта.

Лекарственные средства с выраженным аффинитетом к тканевым белкам имеют концентрацию в крови ниже, чем в органах. Известно, что нестероидные противовоспалительные средства (бутадион, диклофенак), интенсивно связываясь с белками синовиальной жидкости, через 12 ч после приема накапливаются в воспаленных суставах. Концентрация сердечных гликозидов в миокарде в 4 — 10 раз больше, чем в крови. Цефалоспорины связываются в максимальной степени с белками асцитической жидкости.

Связь с белками замедляет гломерулярную фильтрацию лекарственных средств, но мало влияет на их секрецию в почечных канальцах и биотрансформацию.

Лекарственные средства могут конкурировать за связь с белками между собой и с естественными метаболитами организма. Так, лекарства кислого характера, вытесняя билирубин, создают опасность энцефалопатии у новорожденных детей. Фармакологическая несовместимость, возникающая в результате взаимодействия лекарственных средств с белками крови, рассмотрена в лекции 54.

При высокой концентрации лекарственных средств наступает насыщение мест связывания на белках крови. Белковая связь играет роль в возникновении аллергических реакций.

Лекарственные средства адсорбируются также на эритроцитах (местные анестетики, викасол, нитрофураны) и тромбоцитах (серотонин).

Связывание лекарственных средств с белками крови зависит от многих факторов. В детском возрасте этот процесс происходит в меньшей степени, чем у взрослых (для лидокаина, анаприлина, дифенина, сибазона, теофиллина, ампициллина), так как у детей уменьшен синтез альбуминов и кислых 1-гликопротеинов в печени, белки имеют качественно другую последовательность аминокислот, перегружены продуктами метаболизма (билирубин, жирные кислоты, стероиды).

В крови пожилых людей возрастает количество 1-гликопротеинов, на 10 — 20% снижается содержание альбуминов. В связи с этим уменьшается доля свободной фракции противоаритмических средств лидокаина и дизопирамида, вдвое повышается концентрация свободного напроксена.

Имеются сообщения о зависимости от пола в связывании с белками антидепрессанта имипрамина, транквилизатора сибазона, антикоагулянта варфарина. У женщин связь лекарственных средств с белками модифицируют эстрогены. В 3-м триместре беременности концентрация альбуминов в крови снижается на 1 г/100мл, что ослабляет связывание лекарств на 20%. Однако их пиковые концентрации снижаются вследствие увеличения общего количества жидкости в организме (в среднем на 8 л). Под генетическим контролем находятся расположение остатков сиаловой кислоты и композиция пептидной цепи в молекулах 1-гликопротеина.

Липидорастворимые лекарственные средства депонируются в жировой ткани, например, наркозный препарат тиопентал-натрий после инъекции в вену быстро поступает в головной мозг и вызывает наркоз, но уже спустя 20 — 25 мин его основное количество оказывается в скелетных мышцах, а затем в жировых депо. Из депо тиопентал медленно вновь поступает в кровь и головной мозг, поэтому в посленаркозном периоде возникают депрессия и сонливость.

Читайте также:  Лечение воспаления яичек у мужчин народными средствами

ЭЛИМИНАЦИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Элиминация (лат. elimino, eliminatum — выносить за порог, удалять) — это удаление лекарственных средств из организма в результате биотрансформации и экскреции.

Лекарственные средства элиминируются только из центральной камеры. Лекарства, находящиеся в периферической камере, предварительно транспортируются в центральную камеру, а затем подвергаются элиминации.

Элиминация лекарственных средств из плазмы крови происходит согласно экспоненциальной кинетике первого порядка — выводится постоянная часть от концентрации за единицу времени. При работе систем элиминации в условиях насыщения возникает кинетика нулевого порядка — выводится постоянное количество препарата за единицу времени.

Элиминацию лекарственных средств характеризует ряд фармакокинетических параметров:

константа скорости элиминации — часть от концентрации в крови, удаляемая за единицу времени (вычисляется в %);

период полуэлиминации — время, за которое концентрация в крови снижается наполовину (Т1/2);

клиренс (англ. clearance очищение) — объем жидких сред организма, освобождающихся от лекарственных средств в результате биотрансформации, выведения с желчью и мочой (вычисляется в мл/мин/кг).

Различают печеночный (метаболический, желчный) и почечный клиренсы. Например, у циметидина — противогистаминного средства, применяемого для терапии язвенной болезни, почечный клиренс равен 600 мл/мин, метаболический — 200 мл/мин, желчный — 10 мл/мин. Клиренс зависит от состояния ферментных систем печени и интенсивности печеночного кровотока. Для элиминации препарата с быстрым метаболизмом в печени — местного анестетика лидокаина — основное значение имеет печеночный кровоток, для элиминации антипсихотических средств группы фенотиазина — активность ферментных систем детоксикации.

При повторном применении лекарственных средств в биофазе циторецепторов создается равновесное состояние, когда количество поступающего препарата равно количеству элиминируемого. При равновесном состоянии концентрация колеблется в небольших пределах, а фармакологические эффекты проявляются в полной мере. Чем короче период полуэлиминации, тем скорее достигается равновесная концентрация и тем больше разница между максимальной и минимальной концентрациями. Обычно равновесное состояние наступает через 3 — 5 периодов полуэлиминации.

БИОТРАНСФОРМАЦИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ

Биотрансформация представляет собой метаболические превращения лекарственных средств. В большинстве реакций образуются метаболиты, более полярные, чем исходные лекарственные средства. Полярные метаболиты хуже растворяются в липидах, но обладают высокой растворимостью в воде, меньше подвергаются энтерогепатической циркуляции (выведение с желчью в кишечник и повторное всасывание в кровь) и реабсорбции в почечных канальцах. Без биотрансформации одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет.

Эндобиотики подвергаются превращениям под влиянием специфических ферментов, осуществляющих метаболизм их эндогенных аналогов. Ксенобиотики используют для метаболизма ферменты с малой субстратной специфичностью, например, окисляются при участии цитохрома Р-450. Его предшественник появился у бактерий 1,5 млрд лет тому назад. После расхождения путей эволюции растений и животных 1,2 млрд лет тому назад у животных возникли изоферменты цитохрома Р-450 3 и 4 для обезвреживания токсических веществ растений. Выход жизни из моря на сушу 400 млн лет тому назад сопровождался появлением большого числа новых видов растений, часть которых образовывала неизвестные ранее токсические продукты. У животных для безопасного питания этими растениями сформировались изоферменты 1 и 2.

Биотрансформация ксенобиотиков происходит в печени (90 — 95 %), слизистой оболочке тонкого кишечника, почках, легких, коже, крови. Наиболее изучены процессы биотрансформации на мембранах гладкого эндоплазматического ретикулума (ЭПР) печени. Опыты показали, что при гомогенизации и ультрацентрифугировании клеток канальцы ЭПР разрываются и превращаются в функционально активные фрагменты — микросомы. Реакции биотрансформации протекают также в ядре, цитозоле, митохондриях, на плазматической мембране.

Процессы биотрансформации разделяют на две фазы. В реакциях первой фазы — метаболической трансформации — молекулы лекарственных средств подвергаются окислению, восстановлению или гидролизу. Большинство лекарственных средств преобразуется в неактивные метаболиты, но также могут появляться активные и токсические производные (табл. 6). В редких случаях изменяется характер фармакологической активности (антидепрессант ипрониазид превращается в противотуберкулезное средство изониазид). Во второй фазе — реакциях конъюгации — лекарственные средства присоединяют ковалентной связью полярные фрагменты с образованием неактивных продуктов. Для реакций конъюгации необходима энергия.

Таблица 6. Активные метаболиты лекарственных средств

Источник

Оцените статью