Борьба с лекарственной устойчивостью: порядок действий
Группа специалистов, в которую вошли представители диагностических компаний bioMérieux, Curetis, а также члены Совместной Программы сотрудничества Европейской комиссии по антимикробной устойчивости, опубликовали консенсусное заявление, в котором предложили дорожную карту по борьбе с антибиотикорезистентностью. Теперь осталось перейти к выполнению обозначенных в ней задач.
Своевременная диагностика антибиотикорезистентности — важнейшая задача современного мира: лекарственно устойчивые микроорганизмы убивают как минимум 25000 человек ежегодно только в Евросоюзе. При инфекционном заболевании необходимо прежде всего выявить инфекционный агент и показать, какой антибиотик будет против него эффективным, затем выявить механизмы резистентности и определить, какие меры позволят контролировать распространение инфекции. (См. предложенную авторами заявления схему классификации инфекций: порядок вопросов, которые должен ставить клиницист, и пути получения ответов.)
На современном этапе лекарственную устойчивость можно выявить с помощью секвенирования ДНК — это метод быстрый, довольно точный и сравнительно простой методически. Однако могут быть и ошибки, связанные с появлением до сих пор не известного гена устойчивости. По сути, генотипирование — суррогат, а точный ответ об устойчивости дают только методы, связанные с культивированием, но они не везде доступны и отнимают много времени. Поэтому, отмечают авторы, важно ускорить методы фенотипического тестирования (один из вариантов с использованием MALDI-TOF см. в нашей новости). Время до результата (TTR, time to result) — это один из самых важных факторов: задержка адекватного лечения антибиотиками при тяжелых инфекциях увеличивает смертность.
Большинство клинических микробиологов не готовы принять системы, которые не идентифицируют микроорганизмы, а только определяют лекарственную устойчивость: врачам трудно принимать решения о терапии без точной информации о видовой принадлежности. В этом плане также перспективна спектрометрия MALDI-TOF — она дает информацию и о виде.
Особая группа проблем связана с государственным регулированием медицинских услуг. В каждой стране существуют свои правила и процедуры регистрации, поэтому разработчикам трудно удовлетворить всем требованиям одновременно. Здесь необходимы коммуникация между представителями государств и стандартизация требований. Кроме того, процедуры регуляции зачастую занимают много времени и оказываются слишком дорогостоящими для среднего и малого бизнеса.
Сейчас, как заявляет Европейский центр по предотвращению и контролю заболеваний, от трети до половины антимикробных препаратов назначается без необходимости, что способствует росту лекарственной устойчивости. Важная задача — просвещение населения и медработников, сокращение безответственного использования антибиотиков. Но тут тоже необходимы быстрые тесты, поскольку как пациенты, так и врачи склоняются к тому, чтобы начать прием антибиотиков как можно скорее.
Еще одна задача — сбор и представление информации о резистентных штаммах и эффективности антибиотиков. Хотелось бы предоставлять ее в режиме реального времени и для максимального количества образцов, тогда у больного будет больше шансов своевременно получить эффективное лечение.
Возможно, самая большая проблема на сегодняшний день — высокая стоимость современных быстрых диагностических тестов, которая не компенсируется их преимуществами и мешает им выйти на рынок.
Авторы перечислили основные барьеры для разработки и внедрения усовершенствованных систем тестирования на антимикробную чувствительность и предложили способы их преодоления. Кроме того, они представили общую схему разработки и внедрения диагностического продукта, от бизнес-предложения и изучения вопросов интеллектуальной собственности до коммерциализации, с комментариями к каждому этапу. «Несмотря на то, что малые и средние предприятия могут предлагать инновационные и гибкие подходы, крупным компаниям по диагностике, с необходимой критической массой и финансовой поддержкой, намного проще накопить опыт в области клинического развития, регуляторных аспектов и коммуникации и провести обширные (а значит, дорогостоящие) клинические исследования. Это важный барьер для проникновения на рынок новых продуктов, разработанных небольшими компаниями. Поэтому некоторые небольшие компании преуспели, наладив партнерские отношения с более крупными компаниями на заключительных этапах разработки. Следовательно, необходимы новые пути финансирования доклинических исследований и спонсорства для покрытия расходов, связанных с более формальными этапами развития», — говорится в заявлении.
Источник
Борьба с лекарственной устойчивостью микроорганизмов
Под резистентностью (устойчивостью) понимают способность микроорганизма переносить значительно большие концентрации препарата, чем остальные микроорганизмы данного штамма (вида), или развиваться при таких концентрациях, которые превышают достигаемые в макроорганизме при введении антибиотиков, сульфаниламидов и нитрофуранов в терапевтических дозах.
Резистентные штаммы микроорганизмов возникают при изменении генома бактериальной клетки в результате спонтанных мутаций. Последние не связаны с направленным действием на ДНК бактерии антибактериальных препаратов, которые играют роль лишь селективных агентов. В процессе селекции в результате воздействия химиотерапевтических соединений чувствительные микроорганизмы погибают, а резистентные сохраняются, размножаются и распространяются в окружающей среде. Приобретенная резистентность закрепляется и передается по наследству последующим генерациям бактерий.
Скорость развития и степень выраженности устойчивости связаны с видом и даже штаммом возбудителя. Наиболее быстро и часто резистентность к антибактериальным препаратам возникает у стафилококков, эшерихий, микоплазм, протея, синегнойной палочки. Среди пастерелл, эризипелотриксов, клостридий, стрептококков группы А, сибиреязвенных и гемофильных полочек резистентные штаммы выделяют сравнительно редко.
Наиболее частой генетической основой резистентности служит наличие в бактериях внехромосомных факторов устойчивости к лекарственным веществам – плазмид и транспозонов.
Бактериальные плазмиды, связанные с переносом маркеров лекарственной устойчивости в процессе конъюгации клеток, получили название R-факторов. Плазмиды резистентности R (конъюгирующие) состоят из двух компонентов – фактора переноса устойчивости RTF, обеспечивающего передачу генетической информации, и r-фактора, отвечающего за резистентность к антибиотикам. В отдельных случаях r-факторы (неконъюгирующие плазмиды) существуют в бактериальных клетках самостоятельно. Межбактериальный перенос таких r-факторов может осуществляться посредством их мобилизации и коинтеграции с конъюгирующими плазмидами. R-фактор одновременно может содержать 1-10 и более детерминант устойчивости к различным антибактериальным соединениям.
Транспозонные элементы — это фрагменты ДНК, которые свободно перемещаются от одного репликона к другому. Транспозоны определяют различные фенотипические признаки бактериальной клетки, в частности антибиотикорезистентность, и способствуют переносу детерминант устойчивости к антибиотикам между хромосомой, плазмидами и фагами. Они не подчиняются rec-системам клетки, которые ограничивают передачу хромосомных маркеров между неродственными видами. Гены, входящие в состав транспозонов, окружены особыми нуклеотидными последовательностями (IS-элементами), которые и обеспечивают их включение в негомологичный геном. Вхождение детерминант устойчивости в состав транспозонов при постоянно действующем в условиях производства селективном давлении антимикробных препаратов на бактериальные популяции может привести к образованию гибридных плазмид, обусловливающих новые комбинации устойчивости к химиотерапевтическим веществам.
Транспозоны могут перемещаться в пределах одного вида, а также попадать в новые виды и роды микроорганизмов. Установлено, что транспозоны Т 1699 и Т 1700, присутствующие в неконъюгативных плазмидах S. marcescens, первоначально проникают в конъюгативную плазмиду этого вида, вместе с которой перемещаются в другие роды семейства Enterobacteriaceae.
Способность R-факторов передаваться от клетки к клетке путем конъюгации или трансдукции объясняет быстрое распространение их по микробной популяции. Нередко в результате автономной репликации в одной клетке находятся десятки копий плазмид, что способствует быстрому развитию внехромосомной резистентности.
При трансдукции детерминанты устойчивости к антимикробным препаратам переходят от клетки к клетке с помощью бактериофага, играющего роль переносчика. Фаговая ДНК встраивается в бактериальный геном и при репликации, высвобождаясь из хромосомы или плазмиды, может захватывать генетические элементы, отвечающие за резистентность. Фаговая трансдукция играет важную роль в распространении лекарственной устойчивости у грамположительных микроорганизмов, особенно стафилококков и стрептококков.
Перенос плазмид при конъюгации осуществляется посредством половых пилей при установлении контакта между двумя клетками. При этом в донорской клетке (R+) происходит репликация плазмидной ДНК, одна цепь которой проникает в реципиентную клетку (R-), где образует новую плазмиду. Если плазмиды интегрированы с хромосомой, то при конъюгации возможен захват генетического материала из хромосомы плазмидной ДНК. При этом могут передаваться детерминанты резистентности, локализованные в хромосоме.
Передача генетической информации между микроорганизмами с помощью трансформации имеет значение только для лабораторных исследований и не принимает участия в распространении лекарственной устойчивости в условиях производства.
В то же время R-плазмидная передача устойчивости к лекарственным веществам является наиболее важным механизмом возникновения резистентности в бактериальной популяции, особенно в семействе энтеробактерий. С эпизоотической точки зрения наиболее опасна передача детерминант устойчивости от одного вида микроорганизмов к другому.
Циркуляция плазмид от животных к животным, от животных к человеку и от человека к животным способствует быстрому распространению лекарственной резистентности во всем мире. Плазмиды резистентности распространяются в результате контактного перезаражения лекарственно-устойчивыми микроорганизмами больших групп животных, сконцентрированных на ограниченных площадях животноводческих помещений. Отмечена передача R-факторов от животных к человеку. Так, у персонала, работающего в животноводстве, количество резистентной микрофлоры в несколько раз выше, чем у людей, не контактирующих с животными. Высокая обсемененность туш забитых животных и птицы лекарственно-устойчивыми микроорганизмами способствует распространению R-факторов среди работников мясокомбинатов, а также лиц, занятых переработкой мясопродуктов и употребляющих в пищу мясо, не подвергнутое необходимой термической обработке.
Большинство штаммов Е. coli — комменсалы кишечника, которые легко перемещаются как внутри популяции животных и человека, так и между ними, о чем свидетельствует сходный набор плазмид резистентности. Основная масса этих штаммов устойчива к большинству антибактериальных соединений. Апатогенные эшерихии служат постоянным резервуаром плазмид резистентности, в котором попадающий в организм возбудитель, сам по себе не несущий R-фактор, при конъюгации может приобрести детерминанты устойчивости к лекарственным препаратам.
Использование антимикробных средств в заниженных дозах, увеличение интервалов между введением препарата приводят к созданию в организме субтерапевтических концентраций антибактериальных соединений и, как следствие этого, к селекции резистентных форм микроорганизмов.
Применение антибиотиков, предназначенных для этиотропной терапии, с целью повышения продуктивности животных привело к селекции микрофлоры, резистентной к лечебным препаратам. В результате широкого употребления в животноводстве тетрациклиновых антибиотиков в качестве кормовой добавки большинство штаммов сальмонелл и эшерихий приобрело резистентность к препаратам этой группы.
Устойчивость микроорганизмов к антимикробным препаратам в случае как плазмидной, так и хромосомной локализации детерминант резистентности может быть обусловлена несколькими механизмами.
Наиболее часто лекарственная устойчивость связана со способностью микроорганизмов вырабатывать ферменты, инактивирующие антибактериальные препараты. Характерный пример устойчивости этого типа — способность ?-лактамаз (пенициллиназ) бактерий гидролизировать ?-лактамные кольца пенициллинов и цефалоспоринов. В результате разрыва ?-лактамной связи антибиотики теряют свою специфическую активность в отношении микроорганизмов.
Другой важный механизм, обусловливающий антибиотикорезистентность, заключается в нарушении проницаемости микробных клеток для антибиотика. Так, изменение у стафилококков и синегнойной палочки липидного состава клеточной стенки нарушает ее проницаемость соответственно для фузидиевой кислоты и левомицетина. Появление неспецифических белков в наружной мембране Е. coli снижает ее чувствительность к антибиотикам. Резистентность к полимиксину у синегнойной палочки связана с изменением структуры наружной мембраны, что предотвращает проникновение антибиотика в микробную клетку.
Резистентность к тетрациклинам чаще всего носит индуктивный характер. При контакте с антибиотиком у микроорганизмов начинается синтез специфических белков, которые в основном локализуются на наружной мембране и ограничивают поступление тетрациклина в клетку. По другим данным, индуцированные белки нарушают взаимодействие антибиотика с 30S-субчастицей рибосом или, изменяя проницаемость клеточной мембраны, обеспечивают свободный выход тетрациклина из бактериальной клетки.
Модификация чувствительных к антибиотику участков также приводит к развитию резистентности у микроорганизмов. Изменение белка S12, входящего в состав 30S-субчастицы рибосомы, или белков L4 и L12, входящих в состав 50S-субчастицы, уменьшает связывание соответственно аминогликозидов или макролидов с рибосомами, что предотвращает ингибирующее действие антибиотиков на синтез белка. Этот механизм устойчивости обычно обусловлен хромосомными мутациями.
Возможный механизм развития резистентности — это синтез соединений, не инактивирующихся под действием антибактериальных веществ. Так, устойчивость к сульфаниламидам и триметоприму связана с выработкой нечувствительных к действию этих препаратов дигидроптероатсинтетазы и дигидрофолатредуктазы.
Широкое распространение лекарственно-устойчивых микроорганизмов требует разработки комплекса мероприятий, ограничивающих циркуляцию резистентных бактерий среди сельскохозяйственных животных. Меры по ограничению распространения лекарственно-устойчивых микроорганизмов должны быть направлены, во-первых, на предупреждение формирования резистентных популяций и, во-вторых, на подавление уже сформировавшихся популяций.
Один из возможных способов преодоления лекарственной устойчивости микроорганизмов — химическая трансформация молекул антимикробных веществ, в частности антибиотиков, направленная на создание новых препаратов, активных в отношении антибиотико-устойчивых микроорганизмов. Путем трансформации были синтезированы полусинтетические пенициллины и цефалоспорины, нечувствительные к действию ?-лактамаз: метициллин, оксациллин, дик-локсациллин, цефамандол, цефуроксим, цефсулодин и ряд других.
Практически любая молекула антибиотика может инактивироваться в микробной клетке за счет определенного механизма резистентности, поэтому спустя некоторое время после начала использования нового препарата отмечают распространение детерминант резистентности к этому соединению в плазмидах и транспозонах. В связи с этим эффективность каждого антибиотика начинает уменьшаться, что обусловливает необходимость синтеза все новых антимикробных препаратов.
Перспективными методами в борьбе с лекарственно-устойчивыми микроорганизмами служит использование соединений, подавляющих определенные механизмы резистентности в бактериальной клетке. Наибольшие успехи в этом направлении достигнуты в результате применения неконкурентных ингибиторов ?-лактамаз, первый представитель — клавулановая кислота. Она обладает слабой антибактериальной активностью, и как антибактериальный препарат ее не используют. Основное ее свойство — способность необратимо ингибировать пенициллиназы грамположительных и грамотрицательных микроорганизмов.
Перспективное направление в борьбе с резистентностыо бактерий — использование фосфогликолипидпых антибиотиков. Препараты этой группы взаимодействуют с половыми пилями микроорганизмов, в связи с чем в первую очередь подавляют R+-клетки, несущие детерминанты резистентности. Среди фосфогликолипидов широко используют в животноводстве и птицеводстве флавомицин и макарбомицин, которые в желудочно-кишечном тракте сельскохозяйственных животных значительно снижают количество антибиотико-резистентной микрофлоры.
Другим подходом к решению проблемы воздействия на лекарственно-устойчивую популяцию микроорганизмов является использование соединений, обеспечивающих элиминацию плазмид из резистентных бактерий и действующих на детерминанты лекарственной устойчивости. Одним из способов, ведущих к элиминации плазмид из микробной клетки, стало применение ДНК-тропных веществ. Акрифлавин и хинакрин вызывают элиминацию R-факторов из сальмонелл, шигелл и эшерихий.
Помимо непосредственного влияния на R-факторы, ДНК-тропные соединения за счет снижения мутаций замедляют развитие резистентности микроорганизмов к антимикробным препаратам. Так, акрихин и акрифлавин подавляют развитие антибиотико-устойчивых штаммов бактерий к пенициллину, ампициллину, неомицину, рифампицину и стрептомицину.
Еще один путь предупреждения распространения плазмид резистентности — это использование соединений, эффективно подавляющих процессы переноса детерминанты устойчивости при конъюгации бактерий. Наиболее интенсивно ни этот процесс воздействуют рифампицин, бромистый этидий, кофеин, протамин, неомицин и нитрофураны. Некоторые из этих соединений обладают относительно низкой токсичностью и могут оказаться перспективными при использовании в ветеринарной практике. Так, введение цыплятам протамина и фуразолидона подавляет передачу плазмид резистентности у эшерихий.
Нарушение трансдукции химиотерапевтическими веществами, подавляющими перенос фагами детерминант устойчивости к лекарственным веществам, может ограничивать распространение устойчивых штаммов. Бромистый этидий и рифампицин подавляют частоту передачи R-фактора у эшерихий в 100 раз, что связано с подавлением адсорбции бактериофага на поверхности реципиентной клетки. Роккал и хлоргексидин предупреждают появление и накопление канамицин-резистентных микроорганизмов за счет антифагового действия в отношении трансдуцирующих бактериофагов.
Наиболее перспективный и реальный метод, ограничивающий появление и накопление устойчивых бактерий в организме животных — это повышение эффективности химиотерапии за счет использования комбинаций различных антимикробных препаратов. Так, быстрого приобретения устойчивости золотистого стафилококка к новобиоцину удается избежать благодаря его применению с тетрациклином. Использование изониазида со стрептомицином предупреждает развитие резистентных к антибиотику штаммов микобактерий туберкулеза. Метициллин и бензилпенициллин предотвращают быстрое формирование устойчивости к фузидину у стафилококков.
Помимо предупреждения развития резистентности, рационально подобранные сочетания антибактериальных препаратов могут воздействовать на устойчивые штаммы микроорганизмов с помощью подавления ферментов, инактивирующих один из компонентов смеси.
При комбинировании левомицетина с ампициллином и окситетрациклина с пенициллином удается воздействовать на ?-лактамазопродуцирующие штаммы Haemophilus influenzae и стафилококка за счет ингибирования бактериостатическими антибиотиками процесса ?-лактамазообразования в микробной клетке, в связи с чем резистентные микроорганизмы становятся чувствительными к ?-лактамазолабильным антибиотикам.
Для предотвращения развития лекарственной резистентности и воздействия на устойчивую микрофлору наиболее широко используют комбинированную химиотерапию.
Источник